8 research outputs found

    Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10

    No full text
    CD4+CD25+ regulatory T cells have been characterized as a critical population of immunosuppressive cells. They play a crucial role in cancer progression by inhibiting the effector function of CD4+ or CD8+ T lymphocytes. However, whether regulatory T lymphocytes that expand during tumor progression can modulate dendritic cell function is unclear. To address this issue, we have evaluated the inhibitory potential of CD4+CD25+ regulatory T cells from mice bearing a BCR–ABL+ leukemia on bone marrow-derived dendritic cells. We present data demonstrating that CD4+CD25+FoxP3+ regulatory T cells from tumor-bearing animals impede dendritic cell function by down-regulating the activation of the transcription factor NF-κB. The expression of the co-stimulatory molecules CD80, CD86 and CD40, the production of TNF-α, IL-12, and CCL5/RANTES by the suppressed DC is strongly down-regulated. The suppression mechanism requires TGF-β and IL-10 and is associated with induction of the Smad signaling pathway and activation of the STAT3 transcription factor

    A chaperone protein-enriched tumor cell lysate vaccine generates protective humoral immunity in a mouse breast cancer model

    No full text
    We have documented previously that a multiple chaperone protein vaccine termed chaperone-rich cell lysate (CRCL) promotes tumor-specific T-cell responses leading to cancer regression in several mouse tumor models. We report here that CRCL vaccine generated from a mouse breast cancer (TUBO, HER2/neu positive) is also capable of eliciting humoral immunity. Administration of TUBO CRCL triggered anti-HER2/neu antibody production and delayed the progression of established tumors. This antitumor activity can be transferred through the serum isolated from TUBO CRCL-immunized animals and involved both B cells and CD4(+) T lymphocytes. Further evaluation of the mechanisms underlying TUBO CRCL-mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results suggest that tumor-derived CRCL vaccine has a wider applicability as a cancer vaccine because it can target both T-cell- and B-cell-specific responses and may represent a promising approach for the immunotherapy of cancer
    corecore