4 research outputs found

    Human Saliva-Mediated Hydrolysis of Eugenyl-β-D-Glucoside and Fluorescein-di-β-D-Glucoside in In Vivo and In Vitro Models

    No full text
    Eugenyl-β-D-glucopyranoside, also referred to as Citrusin C, is a natural glucoside found among others in cloves, basil and cinnamon plants. Eugenol in a form of free aglycone is used in perfumeries, flavourings, essential oils and in medicinal products. Synthetic Citrusin C was incubated with human saliva in several in vitro models together with substrate-specific enzyme and antibiotics (clindamycin, ciprofloxacin, amoxicillin trihydrate and potassium clavulanate). Citrusin C was detected using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Citrusin C was completely degraded only when incubated with substrate-specific A. niger glucosidase E.C 3.2.1.21 (control sample) and when incubated with human saliva (tested sample). The addition of antibiotics to the above-described experimental setting, stopped Citrusin C degradation, indicating microbiologic origin of hydrolysis observed. Our results demonstrate that Citrusin C is subjected to complete degradation by salivary/oral cavity microorganisms. Extrapolation of our results allows to state that in the human oral cavity, virtually all β-D-glucosides would follow this type of hydrolysis. Additionally, a new method was developed for an in vivo rapid test of glucosidase activity in the human mouth on the tongue using fluorescein-di-β-D-glucoside as substrate. The results presented in this study serve as a proof of concept for the hypothesis that microbial hydrolysis path of β-D-glucosides begins immediately in the human mouth and releases the aglycone directly into the gastrointestinal tract

    Floral Volatile Organic Compounds and a List of Pollinators of Fallopia baldschuanica (Polygonaceae)

    No full text
    Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) emitted by the flowers of F. baldchuanica and identified by headspace gas chromatography/mass spectrometry (HS-GC/MS) analyzes, and a list of flower-visiting and pollinating insects that have been observed in the city center of Wrocław (SW Poland). β-ocimene, heptanal, nonanal, α-pinene, 3-thujene, and limonene, were detected as the floral scent’s most important aroma compounds. F. baldschuanica also produces the aphid alarm pheromones, i.e., β-farnesene and limonene, that repels aphids. Additionally, the pollinators of F. baldschuanica were indicated, based on two years of observations in five sites in the urban area. It was found, that the pollinators of this plant with the highest species stability are: Diptera from families Syrphidae (Chrysotoxum bicinctum, Eristalis pertinax, Eupeodes corollae, Episyrphus balteatus, Eristalis tenax, Syrphus ribesii, Eristalis intricaria), Muscidae (Musca domestica), Sarcophagidae (Sarcophaga spp.), Calliphoridae (Lucilia sericata, Lucilia caesar), Hymenoptera from families Vespidae (Vespula vulgaris), and Apidae (Apis sp., Bombus sp.). The key role of VOCs in adaptation to plant expansion is discussed
    corecore