194 research outputs found

    Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

    Full text link
    This paper studies the generalization performance of multi-class classification algorithms, for which we obtain, for the first time, a data-dependent generalization error bound with a logarithmic dependence on the class size, substantially improving the state-of-the-art linear dependence in the existing data-dependent generalization analysis. The theoretical analysis motivates us to introduce a new multi-class classification machine based on â„“p\ell_p-norm regularization, where the parameter pp controls the complexity of the corresponding bounds. We derive an efficient optimization algorithm based on Fenchel duality theory. Benchmarks on several real-world datasets show that the proposed algorithm can achieve significant accuracy gains over the state of the art

    Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning

    Full text link
    We show a Talagrand-type concentration inequality for Multi-Task Learning (MTL), using which we establish sharp excess risk bounds for MTL in terms of distribution- and data-dependent versions of the Local Rademacher Complexity (LRC). We also give a new bound on the LRC for norm regularized as well as strongly convex hypothesis classes, which applies not only to MTL but also to the standard i.i.d. setting. Combining both results, one can now easily derive fast-rate bounds on the excess risk for many prominent MTL methods, including---as we demonstrate---Schatten-norm, group-norm, and graph-regularized MTL. The derived bounds reflect a relationship akeen to a conservation law of asymptotic convergence rates. This very relationship allows for trading off slower rates w.r.t. the number of tasks for faster rates with respect to the number of available samples per task, when compared to the rates obtained via a traditional, global Rademacher analysis.Comment: In this version, some arguments and results (of the previous version) have been corrected, or modifie
    • …
    corecore