23 research outputs found

    Verminderung von Ischämie-Reperfusions-Schäden in der murinen Skelettmuskulatur durch Inhibierung des Myostatin-Signalweges

    No full text
    Ischämie-Reperfusions-Schäden (IRS) spielen eine elementare Rolle in der klinischen Medizin. Ziel dieser Dissertation war die Evaluation protektiver Effekte durch Inhibition von Myostatin. Es erfolgten die Aufarbeitung von humanen, während autologer Transplantation freier myokutaner Lappenplastiken gewonnener Skelettmuskelproben sowie in-vivo-Versuche mit einer C57BL/6J-Mstn\it {Mstn} Ln/Ln^{Ln/Ln}-Mauslinie und einem eigens entwickelten Model. Abschließend wurden in-vitro-Versuche mit einer durch CRISPR/Cas9-Technologie erzeugten C2C12-Mstn\it {Mstn} /^{-/-}-Zelllinie durchgeführt. In vivo führte eine Myostatindefizienz zur Reduktion von IRS. Durch Transkriptionsanalysen wurden mögliche Mediatoren der protektiven Effekte identifiziert. In vitro wurden verminderte Apoptoseinduktion sowie erhöhte Zellproliferation und -migration beobachtet. Bezüglich der Entstehung von ROS zeigten sich keine Effekte. Zusammenfassend konnten protektive Effekte einer Myostatin-Inhibition in der murinen Skelettmuskulatur bestätigt werden

    Risk Factors for Occurrence and Relapse of Soft Tissue Sarcoma

    No full text
    The diagnosis and prognostic outcome of STS pose a therapeutic challenge in an interdisciplinary setting. The treatment protocols are still discussed controversially. This systematic meta-analysis aimed to determine prognostic factors leading to the development and recurrence of STS. Eligible studies that investigated potential risk factors such as smoking, genetic dispositions, toxins, chronic inflammation as well as prognostic relapse factors including radiation, chemotherapy and margins of resection were identified. Data from 24 studies published between 1993 and 2019 that comprised 6452 patients were pooled. A statistically significant effect developing STS was found in overall studies stating a causality between risk factors and the development of STS (p < 0.01). Although subgroup analysis did not meet statistical significances, it revealed a greater magnitude with smoking (p = 0.23), genetic predisposition (p = 0.13) chronic inflammation, (p = 0.20), and toxins (p = 0.14). Secondly, pooled analyses demonstrated a higher risk of relapse for margin of resection (p = 0.78), chemotherapy (p = 0.20) and radiation (p = 0.16); after 3 years of follow-up. Therefore, we were able to identify risk and relapse prognostic factors for STS, helping to diagnose and treat this low incidental cancer properly

    An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice.

    No full text
    Acute ischemia reperfusion injury in skeletal muscle remains an important issue in several fields of regenerative medicine. Thus, a valid model is essential to gain deeper insights into pathophysiological relations and evaluate possible treatment options. While the vascular anatomy of mice regularly prevents sufficient vessel occlusion by invasive methods, there is a multitude of existing models to induce ischemia reperfusion injury without surgical procedures. Since there is no consensus on which model to prefer, this study aims to develop and evaluate a novel, optimized low-pressure tourniquet model. C57BL/6 mice underwent an ischemic procedure by either tourniquet or invasive artery clamping. A sham group served as control. With exception of the sham group, mice underwent 2 hours of ischemia followed by 4 hours of reperfusion. Groups were compared using microcirculatory and spectroscopic measurements, distinctions in tissue edema, histological and immunohistochemical analyses. Both procedures led to a significant decrease in tissue blood flow (- 97% vs. - 86%) and oxygenation (- 87% vs. - 75%) with a superiority of the low-pressure tourniquet. Tissue edema in the tourniquet cohort was significantly increased (+ 59%), while the increase in the clamping cohort was non-significant (+ 7%). Haematoxylin Eosin staining showed significantly more impaired muscle fibers in the tourniquet group (+ 77 p.p. vs. + 11 p.p.) and increased neutrophil infiltration/ROI (+ 51 vs. + 8). Immunofluorescence demonstrated an equal increase of p38 in both groups (7-fold vs. 8-fold), while the increase in apoptotic markers (Caspase-3, 3-Nitrotyrosine, 4-Hydroxynonenal) was significantly higher in the tourniquet group. The low-pressure tourniquet has been proven to produce reproducible and thus reliable ischemia reperfusion injury. In addition, significantly less force was needed than previously stated. It is therefore an important instrument for studying the pathophysiology of ischemia reperfusion injury and for the development of prophylactic as well as therapeutic interventions

    Inhibition of Pathological Increased Matrix Metalloproteinase (MMP) Activity for Improvement of Bone Regeneration in Diabetes

    No full text
    Patients with diabetes suffer from poor fracture healing. Molecular reasons are not fully understood and our previous gene expression microarray analyses of regenerating bones from mice with type 2 diabetes (db−/db−) revealed accelerated activation of pathways concerning matrix metalloproteases (MMPs). Thus, we picked out the pathological MMP acceleration as a target for profound gene expression analyses and additional therapeutic intervention in the present study. In the first part, gene expression of ECM degrading proteinases and inhibitors was investigated three and seven days postoperatively. Mmp3, Mmp9, Mmp13 and gene expression of MMP inhibitor Timp2 was significantly higher in regenerating bone fractures of db−/db− compared to wild type animals. Timp1 and metalloproteinase AdamTS4 showed no differences. In the second part, we locally applied a single dose (1 µL of 5 µM solution) of the broad-spectrum molecular MMP inhibitor Marimastat on tibial defects in db−/db−. We performed immunohistochemical and histological stainings seven days post operation. Impaired bone healing, collagen content, angiogenesis, and osteoclast invasion in db−/db− were restored significantly by application of Marimastat compared to PBS controls (n = 7/group). Hence, local intervention of bone defects by the molecular MMP inhibitor Marimastat might be an alternative therapeutic intervention for bone healing in diabetes

    Burn care in the Greek and Roman antiquity

    No full text
    The last century brought about more rapid new developments in the treatment of burns, which significantly lowered the mortality of burn injuries. However, burns were already treated in antiquity, where the threshold from spirituality to scientific medicine originated. The existing literature on burn treatment is very limited and there are many cross-references, some of them incorrect. The aim of this work by an interdisciplinary team of historians and physicians is to offer a more precise reproduction of the burn treatment of Greek and Roman antiquity using original texts in context and with a modern scientific background. There are many sources from ancient doctors on the subject of burn treatment, as well as the treatment of burned-out wounds and frostbite, which have not yet been mentioned. The literature research also showed an understanding of scientific contexts in ancient medicine, such as antiseptics or rheology. Interestingly, there was a change in burn medicine from everyday Greek medicine to Roman military medicine with other burn patterns. The care of patients using analgetics and the therapy of burn shock arose from the literature. The ancient world is considered to be the foundation of medicine, but it is believed to have been based mainly on shamanism rather than science. However, already more than two millennia ago, burns were correctly assessed and treated according to today’s scientific standards and scientific relationships were recognized

    The Use of Intact Fish Skin as a Novel Treatment Method for Deep Dermal Burns Following Enzymatic Debridement: A Retrospective Case-Control Study

    No full text
    Background: The optimal therapy for deep burn wounds is based on the early debridement of necrotic tissue followed by wound coverage to avoid a systemic inflammatory response and optimize scar-free healing. The outcomes are affected by available resources and underlying patient factors, which represent challenges in burn care and suboptimal outcomes. In this study, we aimed to determine optimal burn-wound management using enzymatic debridement (NexoBrid™, MediWound Germany GmbH, Rüsselsheim, Germany) and intact fish skin (Kerecis® Omega3 Wound, Isafjordur, Iceland). Methods: In this retrospective case series, 12 patients with superficial or deep dermal burn wounds were treated with enzymatic debridement followed by fish skin, Suprathel® (PolyMedics Innovations GmbH, Denkendorf, Germany), or a split-thickness skin graft (STSG). Patients’ outcomes regarding healing and scar quality were collected objectively and subjectively for 12 months after the burn injury. Results: Wounds treated with fish skin demonstrated accelerated wound healing, a significantly higher water-storage capacity, and better pain relief. Furthermore, improved functional and cosmetic outcomes, such as elasticity, skin thickness, and pigmentation, were demonstrated. The pain and itch expressed as POSAS scores (Patient and Observer Scar Assessment Scale) for fish skin decreased compared to those for wounds managed with an STSG or Suprathel. Importantly, fish skin-treated wounds had significantly improved sebum production and skin elasticity than those treated with Suprathel but showed no significant superiority compared to STSG-treated wounds. Conclusions: Enzymatic debridement in combination with intact fish skin grafts resulted in the faster healing of burn wounds and better functional and aesthetic outcomes than split-thickness skin grafts and Suprathel treatment

    An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model

    No full text
    Acute ischemia reperfusion injury in skeletal muscle remains an important issue in several fields of regenerative medicine. Thus, a valid model is essential to gain deeper insights into pathophysiological relations and evaluate possible treatment options. While the vascular anatomy of mice regularly prevents sufficient vessel occlusion by invasive methods, there is a multitude of existing models to induce ischemia reperfusion injury without surgical procedures. Since there is no consensus on which model to prefer, this study aims to develop and evaluate a novel, optimized low-pressure tourniquet model. C57BL/6 mice underwent an ischemic procedure by either tourniquet or invasive artery clamping. A sham group served as control. With exception of the sham group, mice underwent 2 hours of ischemia followed by 4 hours of reperfusion. Groups were compared using microcirculatory and spectroscopic measurements, distinctions in tissue edema, histological and immunohistochemical analyses. Both procedures led to a significant decrease in tissue blood flow (- 97% vs. - 86%) and oxygenation (- 87% vs. - 75%) with a superiority of the low-pressure tourniquet. Tissue edema in the tourniquet cohort was significantly increased (+ 59%), while the increase in the clamping cohort was non-significant (+ 7%). Haematoxylin Eosin staining showed significantly more impaired muscle fibers in the tourniquet group (+ 77 p.p. vs. + 11 p.p.) and increased neutrophil infiltration/ROI (+ 51 vs. + 8). Immunofluorescence demonstrated an equal increase of p38 in both groups (7-fold vs. 8-fold), while the increase in apoptotic markers (Caspase-3, 3-Nitrotyrosine, 4-Hydroxynonenal) was significantly higher in the tourniquet group. The low-pressure tourniquet has been proven to produce reproducible and thus reliable ischemia reperfusion injury. In addition, significantly less force was needed than previously stated. It is therefore an important instrument for studying the pathophysiology of ischemia reperfusion injury and for the development of prophylactic as well as therapeutic interventions

    Adipose‐Derived Stromal Cells Are Capable of Restoring Bone Regeneration After Post‐Traumatic Osteomyelitis and Modulate B‐Cell Response

    No full text
    Abstract Bone infections are a frequent cause for large bony defects with a reduced healing capacity. In previous findings, we could already show diminished healing capacity after bone infections, despite the absence of the causing agent, Staphylococcus aureus. Moreover, these bony defects showed reduced osteoblastogenesis and increased osteoclastogenesis, meaning elevated bone resorption ongoing with an elevated B‐cell activity. To overcome the negative effects of this postinfectious inflammatory state, we tried to use the regenerative capacity of mesenchymal stem cells derived from adipose tissue (adipose‐derived stem cells [ASCs]) to improve bone regeneration and moreover were curious about immunomodulation of applicated stem cells in this setting. Therefore, we used our established murine animal model and applicated ASCs locally after sufficient debridement of infected bones. Bone regeneration and resorption as well as immunological markers were investigated via histology, immunohistochemistry, Western blot, and fluorescence‐activated cell scanning (FACS) analysis and μ‐computed tomography (CT) analysis. Interestingly, ASCs were able to restore bone healing via elevation of osteoblastogenesis and downregulation of osteoclasts. Surprisingly, stem cells showed an impact on the innate immune system, downregulating B‐cell population. In summary, these data provide a fascinating new and innovative approach, supporting bone healing after bacterial infections and moreover gain insights into the complex ceremony of stem cell interaction in terms of bone infection and regeneration. Stem Cells Translational Medicine 2019;8:1084–109
    corecore