5 research outputs found

    Experimental research regarding carbon fiber/epoxy material manufactured by autoclave process

    No full text
    The fiber reinforced polymers (FRP) represent a group of materials with a very impressive development in the last time. There are used in different applications from aerospace to sports or medicine. Carbon fiber reinforced polymer (CFRP) has special properties and tend to replace traditional materials like steel, aluminum alloys or wood. Different procedures were developed to manufacture the CFRP. Autoclave processing can be considered the most important way to obtain the best mechanical properties of this kind of material. In this paper it is presented the autoclave manufacturing process to obtain theCFRP plates. The autoclave polymerization process steps are indicated for the CFRP made of Twill textile prepreg material. The stacking sequence of the layers is [0/90]. To determine the mechanical properties of the material tensile test on standardized specimens was employed. The obtained mechanical material’s properties are comparable with steel but its density was reduced 5.5 times

    Designing a Spintronic Based Magnetoresistive Bridge Sensor for Current Measurement and Low Field Sensing

    No full text
    An exchanged-biased anisotropic magnetoresistance bridge sensor for low currents measurement is designed and implemented. The sensor has a simple construction (single mask) and is based on results from micromagnetic simulations. For increasing the sensitivity of the sensor, the magnetic field generated by the measurement current passing through the printed circuit board trace is determined through an analytical method and, for comparative analysis, finite elements method simulations are used. The sensor performance is experimentally tested with a demonstrator chip. Four case studies are considered in the analytical method: neglecting the thickness of the trace, dividing the thickness of the trace in several layers, and assuming a finite or very long conductive trace. Additionally, the influence of several adjacent traces in the sensor area is evaluated. The study shows that the analytical design method can be used for optimizing the geometric selectivity of a non-contacting magnetoresistive bridge sensor setup in single trace, differential, and multi-trace (planar coil) configurations. Further, the results can be applied for developing highly performant magnetoresistance sensors and optimizations for low field detection, small dimensions, and low costs

    Carrageenan-Based Compounds as Wound Healing Materials

    No full text
    The following review is focused on carrageenan, a heteroglycan-based substance that is a very significant wound healing biomaterial. Every biomaterial has advantages and weaknesses of its own, but these drawbacks are typically outweighed by combining the material in various ways with other substances. Carrageenans’ key benefits include their water solubility, which enables them to keep the wound and periwound damp and absorb the wound exudate. They have low cytotoxicity, antimicrobial and antioxidant qualities, do not stick to the wound bed, and hence do not cause pain when removed from the wounded region. When combined with other materials, they can aid in hemostasis. This review emphasizes the advantages of using carrageenan for wound healing, including the use of several mixes that improve its properties

    The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference

    No full text
    corecore