22 research outputs found

    Heterogeneous Nuclear Ribonucleoprotein K Is Overexpressed in Acute Myeloid Leukemia and Causes Myeloproliferation in Mice via Altered

    Get PDF
    Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1—a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K’s oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity

    Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia

    Full text link
    Abstract Quantification of measurable residual disease (MRD) provides critical prognostic information in acute myeloid leukemia (AML). A variety of platforms exist for MRD detection, varying in their sensitivity and applicability to individual patients. MRD detected by quantitative polymerase chain reaction, multiparameter flow cytometry, or next-generation sequencing has prognostic implications in various subsets of AML and at various times throughout treatment. While it is overwhelmingly evident that minute levels of remnant disease confer increased risk of relapse and shortened survival, the therapeutic implications of MRD remain less clear. The use of MRD as a guide to selecting the most optimal post-remission therapy, including hematopoietic stem cell transplant or maintenance therapy with hypomethylating agents, small molecule inhibitors, or immunotherapy is an area of active investigation. In addition, whether there are sufficient data to use MRD negativity as a surrogate endpoint in clinical trial development is controversial. In this review, we will critically examine the methods used to detect MRD, its role as a prognostic biomarker, MRD-directed therapeutics, and its potential role as a study endpoint.http://deepblue.lib.umich.edu/bitstream/2027.42/173886/1/13045_2021_Article_1148.pd

    Targeting the NRF2/HO-1 Antioxidant Pathway in FLT3-ITD-Positive AML Enhances Therapy Efficacy

    Full text link
    Acute myeloid leukemia (AML) is a molecularly heterogenous hematological malignancy, with one of the most common mutations being internal tandem duplication (ITD) of the juxtamembrane domain of the fms-like tyrosine kinase receptor-3 (FLT3). Despite the development of FLT3-directed tyrosine kinase inhibitors (TKI), relapse and resistance are problematic, requiring improved strategies. In both patient samples and cell lines, FLT3-ITD raises levels of reactive oxygen species (ROS) and elicits an antioxidant response which is linked to chemoresistance broadly in AML. NF-E2–related factor 2 (NRF2) is a transcription factor regulating the antioxidant response including heme oxygenase -1 (HO-1), a heat shock protein implicated in AML resistance. Here, we demonstrate that HO-1 is elevated in FLT3-ITD-bearing cells compared to FLT3-wild type (WT). Transient knockdown or inhibitor-based suppression of HO-1 enhances vulnerability to the TKI, quizartinib, in both TKI-resistant and sensitive primary AML and cell line models. NRF2 suppression (genetically or pharmacologically using brusatol) results in decreased HO-1, suggesting that TKI-resistance is dependent on an active NRF2-driven pathway. In AML-patient derived xenograft (PDX) models, brusatol, in combination with daunorubicin, reduces leukemia burden and prolongs survival. Cumulatively, these data encourage further development of brusatol and NRF2 inhibition as components of combination therapy for refractory AML

    Targeting the NRF2/HO-1 Antioxidant Pathway in FLT3-ITD-Positive AML Enhances Therapy Efficacy

    Full text link
    Acute myeloid leukemia (AML) is a molecularly heterogenous hematological malignancy, with one of the most common mutations being internal tandem duplication (ITD) of the juxtamembrane domain of the fms-like tyrosine kinase receptor-3 (FLT3). Despite the development of FLT3-directed tyrosine kinase inhibitors (TKI), relapse and resistance are problematic, requiring improved strategies. In both patient samples and cell lines, FLT3-ITD raises levels of reactive oxygen species (ROS) and elicits an antioxidant response which is linked to chemoresistance broadly in AML. NF-E2–related factor 2 (NRF2) is a transcription factor regulating the antioxidant response including heme oxygenase -1 (HO-1), a heat shock protein implicated in AML resistance. Here, we demonstrate that HO-1 is elevated in FLT3-ITD-bearing cells compared to FLT3-wild type (WT). Transient knockdown or inhibitor-based suppression of HO-1 enhances vulnerability to the TKI, quizartinib, in both TKI-resistant and sensitive primary AML and cell line models. NRF2 suppression (genetically or pharmacologically using brusatol) results in decreased HO-1, suggesting that TKI-resistance is dependent on an active NRF2-driven pathway. In AML-patient derived xenograft (PDX) models, brusatol, in combination with daunorubicin, reduces leukemia burden and prolongs survival. Cumulatively, these data encourage further development of brusatol and NRF2 inhibition as components of combination therapy for refractory AML

    Aerobic Copper-Catalyzed Organic Reactions

    Full text link

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    Full text link
    BACKGROUN

    Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome

    Full text link
    BACKGROUN

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Full text link

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Full text link

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Full text link
    corecore