74 research outputs found

    Modeling the transient flow of undercooled glass-forming liquids

    Get PDF
    n a recent experimental study on flow behavior of Vitreloy-1 (Zr41.25Ti13.75Cu12.5Ni10Be22.5), three distinct modes of flow are suggested: Newtonian, non-Newtonian, and localized flow. In a subsequent study, the experimental flow data is utilized in a self-consistent manner to develop a rate equation to govern local free volume production. In the present study the production-rate equation is transformed into a transport equation that can be coupled with momentum and energy transport via viscosity to formulate a model capable to govern the flow of undercooled glass forming liquids. The model is implemented to study the flow behavior of undercooled Vitreloy-1 melt. For a temperature of 700 K and shear loading of 1.0 MPa, the model predicts that the flow profile gradually stabilizes to its Newtonian limit while the liquid is maintained in structural and thermal equilibrium. For the conditions of 675 K and 100 MPa, the model predicts that the flow profile departs from its Newtonian limit and gradually stabilizes to a non-Newtonian limit. The non-Newtonian profile is evaluated independently by considering structurally quasistatic conditions, which yield the shear-rate dependency of flow. For the conditions of 650 K and 2.0 GPa, the model predicts that the flow continuously localizes and ultimately accelerates unconstrained, while the system is driven out of structural and thermal equilibration towards an unstable state associated with free volume generation, viscosity degradation, and temperature rise. The computed temperature and shear rate evolutions for the three distinct flow modes are superimposed on a temperature-shear rate diagram and appear to computationally reproduce the experimental flow map. The system's structural state that appears to dictate flow behavior is quantified by a dimensionless number, which results from a time scale analysis of the free volume production equation

    Coarse-grained description of localized inelastic deformation in amorphous metals

    Get PDF
    The sequence of shear transformation events that lead to a shear band transition in amorphous metals is described by a spatially random coarse-grained model calibrated to obey the thermodynamic scaling relations that govern flow in a real glass. The model demonstrates that shear banding is a consequence of local shear transformation events that self-organize along planes of maximum resolved shear stress to form extended bands of highly localized deformation. This description suggests that shear band formation is incipient during the early stages of deformation of a randomly inhomogeneous material

    Fragility of iron-based glasses

    Get PDF
    The viscosity of various iron-based bulk-glass-forming liquids is measured around the glass transition, and the associated fragility is calculated. Fragility is found to vary broadly between compositions, from a low value of ~43, which indicates fairly “strong” liquid behavior, to ~65, well within the region of “fragile” behavior. Despite a strong covalent bonding identified in the structure of this class of metal/metalloid glasses, their liquid fragility can be remarkably high, exceeding even the very fragile palladium and platinum bulk-glass formers. An inverse correlation between glass-forming ability and fragility is identified, suggesting that iron-based glasses are effectively “kinetically” stabilized

    Rheology and ultrasonic properties of Pt57.5Ni5.3Cu14.7P22.5 liquid

    Get PDF
    The equilibrium and nonequilibrium viscosity and isoconfigurational shear modulus of Pt57.5Ni5.3Cu14.7P22.5 supercooled liquid are evaluated using continuous–strain-rate compression experiments and ultrasonic measurements. By means of a thermodynamically-consistent cooperative shear model, variations in viscosity with both temperature and strain rate are uniquely correlated to the variations in isoconfigurational shear modulus, which leads to an accurate prediction of the liquid fragility and to a good description of the liquid strain-rate sensitivity

    Anelastic to Plastic Transition in Metallic Glass-Forming Liquids

    Get PDF
    The configurational properties associated with the transition from anelasticity to plasticity in a transiently deforming metallic glass-forming liquid are studied. The data reveal that the underlying transition kinetics for flow can be separated into reversible and irreversible configurational hopping across the liquid energy landscape, identified with beta and alpha relaxation processes, respectively. A critical stress characterizing the transition is recognized as an effective Eshelby “backstress,” revealing a link between the apparent anelasticity and the “confinement stress” of the elastic matrix surrounding the plastic core of a shear transformation zone

    Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening

    Get PDF
    The change in the configurational enthalpy of metallic glass forming liquids induced by mechanical deformation and its effect on elastic softening is assessed. The acoustically measured shear modulus is found to decrease with increasing configurational enthalpy by a dependence similar to one obtained by softening via thermal annealing. This establishes that elastic softening is governed by a unique functional relationship between shear modulus and configurational enthalpy

    Stochastic Metallic-Glass Cellular Structures Exhibiting Benchmark Strength

    Get PDF
    By identifying the key characteristic “structural scales” that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date

    Compression-compression fatigue of Pd_(43)Ni_(10)Cu_(27)P_(20) metallic glass foam

    Get PDF
    Compression-compression fatigue testing of metallic-glass foam is performed. A stress-life curve is constructed, which reveals an endurance limit at a fatigue ratio of about 0.1. The origin of fatigue resistance of this foam is identified to be the tendency of intracellular struts to undergo elastic and reversible buckling, while the fatigue process is understood to advance by anelastic strut buckling leading to localized plasticity (shear banding) and ultimate strut fracture. Curves of peak and valley strain versus number of cycles coupled with plots of hysteresis loops and estimates of energy dissipation at various loading cycles confirm the four stages of foam-fatigue

    Cooperative Shear Model for the Rheology of Glass-Forming Metallic Liquids

    Get PDF
    A rheological law based on the concept of cooperatively sheared flow zones is presented, in which the effective thermodynamic state variable controlling flow is identified to be the isoconfigurational shear modulus of the liquid. The law captures Newtonian as well as non-Newtonian viscosity data for glass-forming metallic liquids over a broad range of fragility. Acoustic measurements on specimens deformed at a constant strain rate correlate well with the measured steady-state viscosities, hence verifying that viscosity has a unique functional relationship with the isoconfigurational shear modulus

    Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses

    Get PDF
    Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip
    • …
    corecore