189 research outputs found

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Association between anticholinergic burden and dementia in UK Biobank

    Get PDF
    Abstract Background Previous studies on the relationship between anticholinergic drugs and dementia have reported heterogeneous results. This variability could be due to different anticholinergic scales and differential effects of distinct classes of drugs. Methods Using Cox proportional hazards models, we computed the association between annual anticholinergic burden (AChB) and the risk of dementia in UK Biobank with linked general practitioner prescription records between the years 2000 and 2015 (n = 171,775). Results AChB according to most anticholinergic scales (standardized odds ratio range: 1.027–1.125) and the slope of the AChB trajectory (hazard ratio = 1.094; 95% confidence interval: 1.068–1.119) were predictive of dementia. However, the association between AChB and dementia held only for some classes of drugs, especially antidepressants, antiepileptics, and antidiuretics. Discussion The heterogeneity in previous findings may partially be due to different effects for different classes of drugs. Future studies should establish differences in more detail and further examine the practicality of a general measure of AChB relating to the risk of dementia

    The epigenetic clock and telomere length are independently associated with chronological age and mortality

    Get PDF
    Telomere length and DNA methylation have been proposed as biological clock measures that track chronological age. Whether they change in tandem, or contribute independently to the prediction of chronological age, is not known

    The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936

    Get PDF
    Background: The DNA methylation-based 'epigenetic clock' correlates strongly with chronological age, but it is currently unclear what drives individual differences. We examine cross-sectional and longitudinal associations between the epigenetic clock and four mortality-linked markers of physical and mental fitness: lung function, walking speed, grip strength and cognitive ability. Methods: DNA methylation-based age acceleration (residuals of the epigenetic clock estimate regressed on chronological age) were estimated in the Lothian Birth Cohort 1936 at ages 70 (n=920), 73 (n=299) and 76 (n=273) years. General cognitive ability, walking speed, lung function and grip strength were measured concurrently. Cross-sectional correlations between age acceleration and the fitness variables were calculated. Longitudinal change in the epigenetic clock estimates and the fitness variables were assessed via linear mixed models and latent growth curves. Epigenetic age acceleration at age 70 was used as a predictor of longitudinal change in fitness. Epigenome-wide association studies (EWASs) were conducted on the four fitness measures. Results: Cross-sectional correlations were significant between greater age acceleration and poorer performance on the lung function, cognition and grip strength measures (r range: -0.07 to -0.05, P range: 9.7 x 10 to 0.024). All of the fitness variables declined over time but age acceleration did not correlate with subsequent change over 6 years. There were no EWAS hits for the fitness traits. Conclusions: Markers of physical and mental fitness are associated with the epigenetic clock (lower abilities associated with age acceleration). However, age acceleration does not associate with decline in these measures, at least over a relatively short follow-up

    Integration of datasets for individual prediction of DNA methylation-based biomarkers

    Get PDF
    BACKGROUND: Epigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation.RESULTS: We compare two birth cohorts (Lothian Birth Cohorts of 1921 and 1936 - nLBC1921 = 387 and nLBC1936 = 498) with blood-based DNA methylation assessed at the same chronological age (79 years) and processed in the same lab but in different years and experimental batches. We examine the effect of 16 normalisation methods on a novel BMI EpiScore (trained in an external cohort, n = 18,413), and Horvath's pan-tissue DNA methylation age, when the cohorts are normalised separately and together. The BMI EpiScore explains a maximum variance of R2=24.5% in BMI in LBC1936 (SWAN normalisation). Although there are cross-cohort R2 differences, the normalisation method makes a minimal difference to within-cohort estimates. Conversely, a range of absolute differences are seen for individual-level EpiScore estimates for BMI and age when cohorts are normalised separately versus together. While within-array methods result in identical EpiScores whether a cohort is normalised on its own or together with the second dataset, a range of differences is observed for between-array methods.CONCLUSIONS: Normalisation methods returning similar EpiScores, whether cohorts are analysed separately or together, will minimise technical variation when projecting new data onto a reference panel. These methods are important for cases where raw data is unavailable and joint normalisation of cohorts is computationally expensive.</p

    GWAS on family history of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a public health priority for the 21st century. Risk reduction currently revolves around lifestyle changes with much research trying to elucidate the biological underpinnings. We show that self-report of parental history of Alzheimer’s dementia for case ascertainment in a genome-wide association study of 314,278 participants from UK Biobank (27,696 maternal cases, 14,338 paternal cases) is a valid proxy for an AD genetic study. After meta-analysing with published consortium data (n = 74,046 with 25,580 cases across the discovery and replication analyses), three new AD-associated loci (P &lt; 5 × 10−8) are identified. These contain genes relevant for AD and neurodegeneration: ADAM10, BCKDK/KAT8 and ACE. Novel gene-based loci include drug targets such as VKORC1 (warfarin dose). We report evidence that the association of SNPs in the TOMM40 gene with AD is potentially mediated by both gene expression and DNA methylation in the prefrontal cortex. However, it is likely that multiple variants are affecting the trait and gene methylation/expression. Our discovered loci may help to elucidate the biological mechanisms underlying AD and, as they contain genes that are drug targets for other diseases and disorders, warrant further exploration for potential precision medicine applications
    corecore