95 research outputs found

    mTOR Complex 1 Content and Regulation Is Adapted to Animal Longevity

    Get PDF
    Decreased content and activity of the mechanistic target of rapamycin (mTOR) signalling pathway, as well as the mTOR complex 1 (mTORC1) itself, are key traits for animal species and human longevity. Since mTORC1 acts as a master regulator of intracellular metabolism, it is respon sible, at least in part, for the longevous phenotype. Conversely, increased content and activity of mTOR signalling and mTORC1 are hallmarks of ageing. Additionally, constitutive and aberrant activity of mTORC1 is also found in age-related diseases such as Alzheimer’s disease (AD) and cancer. The downstream processes regulated through this network are diverse, and depend upon nutrient availability. Hence, multiple nutritional strategies capable of regulating mTORC1 activity and, consequently, delaying the ageing process and the development of age-related diseases, are under continuous study. Among these, the restriction of calories is still the most studied and ro bust intervention capable of downregulating mTOR signalling and feasible for application in the human population.Research by the authors was supported by the Spanish Ministry of Science, Innovation, and Universities (Ministerio de Ciencia, Innovación y Universidades, co-financed by FEDER funds from the European Union ‘A way to build Europe’, grant RTI2018-099200-B-I00), the IRBLleida-Diputació de Lleida (PIRS2021), and the Generalitat of Catalonia: Agency for Management of University and Research Grants (2017SGR696) to R.P. IRBLleida is a CERCA Programme/Generalitat of Cataloni

    Plasma methionine metabolic profile is associated with longevity in mammals

    Get PDF
    Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species.This work was supported by the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), and the Generalitat of Catalonia (Agency for Management of University and Research Grants (2017SGR696) and Department of Health (SLT002/16/00250)) to R.P. This study has been co-financed by FEDER funds from the European Union (“A way to build Europe”). IRBLleida is a CERCA Programme/Generalitat of Catalonia. M.J. is a ‘Serra Hunter’ Fellow. N.M.M. received a predoctoral fellowship from the Generalitat of Catalonia (AGAUR, ref 2018FI_B2_00104)
    corecore