248 research outputs found

    Does serous tubal intraepithelial carcinoma (STIC) metastasize?:The clonal relationship between STIC and subsequent high-grade serous carcinoma in BRCA1/2 mutation carriers several years after risk-reducing salpingo-oophorectomy

    Get PDF
    Objective: The majority of high-grade serous carcinomas (HGSC) of the ovary, fallopian tube, and peritoneum arise from the precursor lesion called serous tubal intraepithelial carcinoma (STIC). It has been postulated that cells from STICs exfoliate into the peritoneal cavity and give rise to peritoneal HGSC several years later. While co-existent STICs and HGSCs have been reported to share similarities in their mutational profiles, clonal relationship between temporally distant STICs and HGSCs have been infrequently studied and the natural history of STICs remains poorly understood. Methods: We performed focused searches in two national databases from the Netherlands and identified a series of BRCA1/2 germline pathogenic variant (GPV) carriers (n = 7) who had STIC, and no detectable invasive carcinoma, at the time of their risk-reducing salpingo-oophorectomy (RRSO), and later developed peritoneal HGSC. The clonal relationship between these STICs and HGSCs was investigated by comparing their genetic mutational profile by performing next-generation targeted sequencing. Results: Identical pathogenic mutations and loss of heterozygosity of TP53 were identified in the STICs and HGSCs of five of the seven patients (71%), confirming the clonal relationship of the lesions. Median interval for developing HGSC after RRSO was 59 months (range: 24–118 months). Conclusion: Our results indicate that cells from STIC can shed into the peritoneal cavity and give rise to HGSC after long lag periods in BRCA1/2 GPV carriers, and argues in favor of the hypothesis that STIC lesions may metastasize.</p

    Does serous tubal intraepithelial carcinoma (STIC) metastasize?:The clonal relationship between STIC and subsequent high-grade serous carcinoma in BRCA1/2 mutation carriers several years after risk-reducing salpingo-oophorectomy

    Get PDF
    Objective: The majority of high-grade serous carcinomas (HGSC) of the ovary, fallopian tube, and peritoneum arise from the precursor lesion called serous tubal intraepithelial carcinoma (STIC). It has been postulated that cells from STICs exfoliate into the peritoneal cavity and give rise to peritoneal HGSC several years later. While co-existent STICs and HGSCs have been reported to share similarities in their mutational profiles, clonal relationship between temporally distant STICs and HGSCs have been infrequently studied and the natural history of STICs remains poorly understood. Methods: We performed focused searches in two national databases from the Netherlands and identified a series of BRCA1/2 germline pathogenic variant (GPV) carriers (n = 7) who had STIC, and no detectable invasive carcinoma, at the time of their risk-reducing salpingo-oophorectomy (RRSO), and later developed peritoneal HGSC. The clonal relationship between these STICs and HGSCs was investigated by comparing their genetic mutational profile by performing next-generation targeted sequencing. Results: Identical pathogenic mutations and loss of heterozygosity of TP53 were identified in the STICs and HGSCs of five of the seven patients (71%), confirming the clonal relationship of the lesions. Median interval for developing HGSC after RRSO was 59 months (range: 24–118 months). Conclusion: Our results indicate that cells from STIC can shed into the peritoneal cavity and give rise to HGSC after long lag periods in BRCA1/2 GPV carriers, and argues in favor of the hypothesis that STIC lesions may metastasize.</p

    Underdiagnosis of foodborne hepatitis a, the Netherlands, 2008-2010

    Get PDF
    Outbreaks of foodborne hepatitis A are rarely recognized as such. Detection of these infections is challenging because of the infection's long incubation period and patients' recall bias. Nevertheless, the complex food market might lead to reemergence of hepatitis A virus outside of disease-endemic areas. To assess the role of food as a source of infection, we combined routine surveillance with real-time strain sequencing in the Netherlands during 2008-2010. Virus RNA from serum of 248 (59%) of 421 reported case-patients could be sequenced. Without typing, foodborne transmission was suspected for only 4% of reported case-patients. With typing, foodborne transmission increased to being the most probable source of infection for 16%. We recommend routine implementation of an enhanced surveillance system that includes prompt forwarding and typing of hepatitis A virus RNA isolated from serum, standard use of questionnaires, data sharing, and centralized interpretation of data

    The COMPARE Data Hubs

    Get PDF
    Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders

    The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice

    Get PDF
    More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore