1,154 research outputs found

    Optimal scheduling and control for constrained multi-agent networked control systems

    Get PDF
    In this paper, we study optimal control and communication schedule co-design for multi-agent networked control systems, with assuming shared parallel communication channels and uncertain constrained linear time-invariant discrete-time systems. To that end, we specify the communication demand for each system using an associated robust control invariant set and reachability analysis. We use these communication demands and invariant sets to formulate tube-based model predictive control and offline/online communication schedule co-design problems. Since the scheduling part includes an infinite dimension integer problem, we propose heuristics to find suboptimal solutions that guarantee robust constraints satisfaction and recursive feasibility. The effectiveness of our approach is illustrated through numerical simulations

    Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti–Salmonella typhimurium immunity

    Get PDF
    The role of matricellular proteins in bacterial containment and in the induction of pathogen-specific adaptive immune responses is unknown. We studied the function of the matricellular protein secreted protein, acidic and rich in cysteine (SPARC/osteonectin) in the dissemination of locally injected Salmonella typhimurium and in the subsequent immune response. We show that SPARC was required for the development of organized acute inflammatory reactions with granuloma-like (GL) features and for the control of bacterial spreading to draining lymph nodes (DLNs). However, SPARC-related GL also inhibited dendritic cell (DC) migration to the DLNs and limited the development of adaptive immune response, thus conferring increased susceptibility to the pathogen. In SPARC-deficient mice, both DC migration and antigen-specific responses were restored against bacteria, leading to protective anti–S. typhimurium immunity. This highlights a new function of matricellular proteins in bacterial infection and suggests that initial containment of bacteria can have drawbacks

    Microenvironment-Centred Dynamics in Aggressive B-Cell Lymphomas

    Get PDF
    Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas

    Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the "dock-and-lock" model.

    Get PDF
    Prion protein (PrP) amyloid formation is a central feature of genetic and acquired prion diseases such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. Themajor component of GSS amyloid is a PrP fragment spanning residues ∼82-146, which when synthesized as a peptide, readily forms fibrils featuring GSS amyloid. The present study employed surface plasmon resonance (SPR) to characterize the binding events underlying PrP82-146 oligomerization at the first stages of fibrillization, according to evidence suggesting a pathogenic role of prefibrillar oligomers rather than mature amyloid fibrils. We followed in real time the binding reactions occurring during short term (seconds) addition of PrP82-146 small oligomers (1-5-mers, flowing species) onto soluble prefibrillar PrP82-146 aggregates immobilized on the sensor surface. SPR data confirmed very efficient aggregation/elongation, consistent with the hypothesis of nucleation-dependent polymerization process. Much lower binding was observed when PrP82-146 flowed onto the scrambled sequence of PrP82-146 or onto prefibrillar Aβ42 aggregates. As previously found with Aβ40, SPR data could be adequately fitted by equations modeling the "dock-and-lock" mechanism, in which the "locking" step is due to sequential conformational changes, each increasing the affinity of the monomerfor the fibril until a condition of irreversible binding is reached. However, these conformational changes (i.e. the locking steps) appear to be faster and easier with PrP82-146 than with Aβ40. Such differences suggest that PrP82-146 has a greater propensity to polymerize and greater stability of the aggregates. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice

    Get PDF
    AbstractWe previously demonstrated that a specialized subset of immature myeloid cells migrate to lymphoid organs as a result of tumor growth or immune stress, where they suppress B and T cell responses to Ags. Although NO was required for suppression of mitogen activation of T cells by myeloid suppressor cells (MSC), it was not required for suppression of allogenic responses. In this study, we describe a novel mechanism used by MSC to block T cell proliferation and CTL generation in response to alloantigen, which is mediated by the enzyme arginase 1 (Arg1). We show that Arg1 increases superoxide production in myeloid cells through a pathway that likely utilizes the reductase domain of inducible NO synthase (iNOS), and that superoxide is required for Arg1-dependent suppression of T cell function. Arg1 is induced by IL-4 in freshly isolated MSC or cloned MSC lines, and is therefore up-regulated by activated Th2, but not Th1, cells. In contrast, iNOS is induced by IFN-γ and Th1 cells. Because Arg1 and iNOS share l-arginine as a common substrate, our results indicate that l-arginine metabolism in myeloid cells is a potential target for selective intervention in reversing myeloid-induced dysfunction in tumor-bearing hosts

    Persistent immune stimulation exacerbates genetically driven myeloproliferative disorders via stromal remodeling

    Get PDF
    Systemic immune stimulation has been associated with increased risk of myeloid malignancies, but the pathogenic link is unknown. We demonstrate in animal models that experimental systemic immune activation alters the bone marrow stromal microenvironment, disarranging extracellular matrix (ECM) microarchitecture, with downregulation of secreted protein acidic and rich in cysteine (SPARC) and collagen-I and induction of complement activation. These changes were accompanied by a decrease in Treg frequency and by an increase in activated effector T cells. Under these conditions, hematopoietic precursors harboring nucleophosmin-1 (NPM1) mutation generated myeloid cells unfit for normal hematopoiesis but prone to immunogenic death, leading to neutrophil extracellular trap (NET) formation. NET fostered the progression of the indolent NPM1-driven myeloproliferation toward an exacerbated and proliferative dysplastic phenotype. Enrichment in NET structures was found in the bone marrow of patients with autoimmune disorders and in NPM1-mutated acute myelogenous leukemia (AML) patients. Genes involved in NET formation in the animal model were used to design a NET-related inflammatory gene signature for human myeloid malignancies. This signature identified two AML subsets with different genetic complexity and different enrichment in NPM1 mutation and predicted the response to immunomodulatory drugs. Our results indicate that stromal/ECM changes and priming of bone marrow NETosis by systemic inflammatory conditions can complement genetic and epigenetic events towards the development and progression of myeloid malignancy

    Suppression of Invasion and Metastasis of Triple-Negative Breast Cancer Lines by Pharmacological or Genetic Inhibition of Slug Activity

    Get PDF
    AbstractMost triple-negative breast cancers (TNBCs) exhibit gene expression patterns associated with epithelial-to-mesenchymal transition (EMT), a feature that correlates with a propensity for metastatic spread. Overexpression of the EMT regulator Slug is detected in basal and mesenchymal-type TNBCs and is associated with reduced E-cadherin expression and aggressive disease. The effects of Slug depend, in part, on the interaction of its N-terminal SNAG repressor domain with the chromatin-modifying protein lysine demethylase 1 (LSD1); thus, we investigated whether tranylcypromine [also known as trans-2-phenylcyclopropylamine hydrochloride (PCPA) or Parnate], an inhibitor of LSD1 that blocks its interaction with Slug, suppresses the migration, invasion, and metastatic spread of TNBC cell lines. We show here that PCPA treatment induces the expression of E-cadherin and other epithelial markers and markedly suppresses migration and invasion of TNBC cell lines MDA-MB-231 and BT-549. These effects were phenocopied by Slug or LSD1 silencing. In two models of orthotopic breast cancer, PCPA treatment reduced local tumor growth and the number of lung metastases. In mice injected directly in the blood circulation with MDA-MB-231 cells, PCPA treatment or Slug silencing markedly inhibited bone metastases but had no effect on lung infiltration. Thus, blocking Slug activity may suppress the metastatic spread of TNBC and, perhaps, specifically inhibit homing/colonization to the bone

    Dioxin Exposure, from Infancy through Puberty, Produces Endocrine Disruption and Affects Human Semen Quality

    Get PDF
    BACKGROUND: Environmental toxicants are allegedly involved in decreasing semen quality in recent decades; however, definitive proof is not yet available. In 1976 an accident exposed residents in Seveso, Italy, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). OBJECTIVE: The purpose of this study was to investigate reproductive hormones and sperm quality in exposed males. METHODS: We studied 135 males exposed to TCDD at three age groups, infancy/prepuberty (1-9 years), puberty (10-17 years), and adulthood (18-26 years), and 184 healthy male comparisons using 1976 serum TCDD levels and semen quality and reproductive hormones from samples collected 22 years later. RESULTS: Relative to comparisons, 71 men (mean age at exposure, 6.2 years; median serum TCDD, 210 ppt) at 22-31 years of age showed reductions in sperm concentration (53.6 vs. 72.5 million/mL; p = 0.025); percent progressive motility (33.2% vs. 40.8%; p < 0.001); total motile sperm count (44.2 vs. 77.5 x 10(6); p = 0.018); estradiol (76.2 vs. 95.9 pmol/L; p = 0.001); and an increase in follicle-stimulating hormone (FSH; 3.58 vs. 2.98 IU/L; p = 0.055). Forty-four men (mean age at exposure, 13.2 years; median serum TCDD, 164 ppt) at 32-39 years of age showed increased total sperm count (272 vs. 191.9 x 10(6); p = 0.042), total motile sperm count (105 vs. 64.9 x10(6); p = 0.036), FSH (4.1 vs. 3.2 UI/L; p = 0.038), and reduced estradiol (74.4 vs. 92.9 pmol/L; p < 0.001). No effects were observed in 20 men, 40-47 years of age, who were exposed to TCDD (median, 123 ppt) as adults (mean age at exposure, 21.5 years). CONCLUSIONS: Exposure to TCDD in infancy reduces sperm concentration and motility, and an opposite effect is seen with exposure during puberty. Exposure in either period leads to permanent reduction of estradiol and increased FSH. These effects are permanent and occur at TCDD concentrations < 68 ppt, which is within one order of magnitude of those in the industrialized world in the 1970s and 1980s and may be responsible at least in part for the reported decrease in sperm quality, especially in younger men
    corecore