48 research outputs found
Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation
Most DNA viruses express small regulatory RNAs, which interfere with viral or
cellular gene expression. For adeno-associated virus (AAV), a small ssDNA
virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs
have not yet been described. This is the first comprehensive Illumina-based
RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection
with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs
were detected mostly close to or within the AAV-ITR and apparently transcribed
from the newly identified anti-p5 promoter. An additional small RNA hotspot
was located downstream of the p40 promoter, from where transcription of non-
coding RNAs associated with the inhibition of adenovirus replication were
recently described. Parallel detection of known Ad and HSV miRNAs indirectly
validated the newly identified small AAV RNA species. The predominant small
RNAs were analyzed on Northern blots and by human argonaute protein-mediated
co-immunoprecipitation. None of the small AAV RNAs showed characteristics of
bona fide miRNAs, but characteristics of alternative RNA processing indicative
of differentially regulated AAV promoter-associated small RNAs. Furthermore,
the AAV-induced regulation of cellular miRNA levels was analyzed at different
time points post infection. In contrast to other virus groups AAV infection
had virtually no effect on the expression of cellular miRNA, which underscores
the long-established concept that wild-type AAV infection is apathogenic
Capsid Structure of Aleutian Mink Disease Virus and Human Parvovirus 4: New Faces in the Parvovirus Family Portrait
Parvoviruses are small, single-stranded DNA viruses with non-enveloped capsids. Determining the capsid structures provides a framework for annotating regions important to the viral life cycle. Aleutian mink disease virus (AMDV), a pathogen in minks, and human parvovirus 4 (PARV4), infecting humans, are parvoviruses belonging to the genera Amdoparvovirus and Tetraparvovirus, respectively. While Aleutian mink disease caused by AMDV is a major threat to mink farming, no clear clinical manifestations have been established following infection with PARV4 in humans. Here, the capsid structures of AMDV and PARV4 were determined via cryo-electron microscopy at 2.37 and 3.12 Å resolutions, respectively. Despite low amino acid sequence identities (10–30%) both viruses share the icosahedral nature of parvovirus capsids, with 60 viral proteins (VPs) assembling the capsid via two-, three-, and five-fold symmetry VP-related interactions, but display major structural variabilities in the surface loops when the capsid structures are superposed onto other parvoviruses. The capsid structures of AMDV and PARV4 will add to current knowledge of the structural platform for parvoviruses and permit future functional annotation of these viruses, which will help in understanding their infection mechanisms at a molecular level for the development of diagnostics and therapeutics
Capsid Structure of Aleutian Mink Disease Virus and Human Parvovirus 4: New Faces in the Parvovirus Family Portrait
Parvoviruses are small, single-stranded DNA viruses with non-enveloped capsids. Determining the capsid structures provides a framework for annotating regions important to the viral life cycle. Aleutian mink disease virus (AMDV), a pathogen in minks, and human parvovirus 4 (PARV4), infecting humans, are parvoviruses belonging to the genera Amdoparvovirus and Tetraparvovirus, respectively. While Aleutian mink disease caused by AMDV is a major threat to mink farming, no clear clinical manifestations have been established following infection with PARV4 in humans. Here, the capsid structures of AMDV and PARV4 were determined via cryo-electron microscopy at 2.37 and 3.12 Å resolutions, respectively. Despite low amino acid sequence identities (10–30%) both viruses share the icosahedral nature of parvovirus capsids, with 60 viral proteins (VPs) assembling the capsid via two-, three-, and five-fold symmetry VP-related interactions, but display major structural variabilities in the surface loops when the capsid structures are superposed onto other parvoviruses. The capsid structures of AMDV and PARV4 will add to current knowledge of the structural platform for parvoviruses and permit future functional annotation of these viruses, which will help in understanding their infection mechanisms at a molecular level for the development of diagnostics and therapeutics
pH-Induced conformational changes of human bocavirus capsids
Human bocavirus 1 (HBoV1) and HBoV2 to-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7-angstrom resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region III (VR-III) of the capsid protein VP3, proposed as a host tissue tropism determinant, was structurally similar among the gastrointestinal strains HBoV2 to-4, but differed from that of HBoV1 with its tropism for the respiratory tract. Toward understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-to 2.7-angstrom resolution at pHs 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc, or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed under low-pH conditions localized to the VP N terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection, and side chain modifications highlight pH-sensitive regions of the capsid. IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7-A resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.Peer reviewe
Impact of Natural or Synthetic Singletons in the Capsid of Human Bocavirus 1 on Particle Infectivity and Immunoreactivity
Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a large variety of HBoV1 capsid variants has been isolated from human samples, only one has been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive samples and managed to PCR amplify and sequence 29 distinct HBoV1 capsid variants. These differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino acids, including a frequent change of threonine to serine at position 590. Interestingly, this T590S mutation was associated with lower viral loads in infected patients. Analysis of the time course of infection in two patients for up to 15 weeks revealed a gradual accumulation of T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, T590S was beneficial and significantly increased titers compared to that of T590 variants but had no major impact on their transduction ability or immunoreactivity. Additional targeted mutations in the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly, or DNA packaging. Our new findings on the phylogeny, infectivity, and immunoreactivity of HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies to enhance HBoV1 gene transfer vectors. IMPORTANCE The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology and that are concurrently highly interesting as a scaffold for the development of human gene therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others have recently harnessed to cross-package and deliver recombinant genomes derived from another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our discovery of a mutational hot spot at HBoV1 capsid position 590 that accumulated in two patients during natural infection and that lowers viral loads but increases vector yields. Thereby, our study expands our current understanding of HBoV1 biology in infected human subjects and concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors.Peer reviewe
Atomic Resolution Structures of Human Bufaviruses Determined by Cryo-Electron Microscopy
Bufavirus strain 1 (BuV1), a member of the Protoparvovirus genus of the Parvoviridae, was first isolated from fecal samples of children with acute diarrhea in Burkina Faso. Since this initial discovery, BuVs have been isolated in several countries, including Finland, the Netherlands, and Bhutan, in pediatric patients exhibiting similar symptoms. Towards their characterization, the structures of virus-like particles of BuV1, BuV2, and BuV3, the current known genotypes, have been determined by cryo-electron microscopy and image reconstruction to 2.84, 3.79, and 3.25 angstrom, respectively. The BuVs, 65-73% identical in amino acid sequence, conserve the major viral protein, VP2, structure and general capsid surface features of parvoviruses. These include a core -barrel (B-I), -helix A, and large surface loops inserted between these elements in VP2. The capsid contains depressions at the icosahedral 2-fold and around the 5-fold axes, and has three separated protrusions surrounding the 3-fold axes. Structure comparison among the BuVs and to available parvovirus structures revealed capsid surface variations and capsid 3-fold protrusions that depart from the single pinwheel arrangement of the animal protoparvoviruses. These structures provide a platform to begin the molecular characterization of these potentially pathogenic viruses.Peer reviewe
Structural Characterization of Cuta- and Tusavirus: Insight into Protoparvoviruses Capsid Morphology
Several members of the Protoparvovirus genus, capable of infecting humans, have been recently discovered, including cutavirus (CuV) and tusavirus (TuV). To begin the characterization of these viruses, we have used cryo-electron microscopy and image reconstruction to determine their capsid structures to ~2.9 Å resolution, and glycan array and cell-based assays to identify glycans utilized for cellular entry. Structural comparisons show that the CuV and TuV capsids share common features with other parvoviruses, including an eight-stranded anti-parallel β-barrel, depressions at the icosahedral 2-fold and surrounding the 5-fold axes, and a channel at the 5-fold axes. However, the viruses exhibit significant topological differences in their viral protein surface loops. These result in three separated 3-fold protrusions, similar to the bufaviruses also infecting humans, suggesting a host-driven structure evolution. The surface loops contain residues involved in receptor binding, cellular trafficking, and antigenic reactivity in other parvoviruses. In addition, terminal sialic acid was identified as the glycan potentially utilized by both CuV and TuV for cellular entry, with TuV showing additional recognition of poly-sialic acid and sialylated Lewis X (sLeXLeXLeX) motifs reported to be upregulated in neurotropic and cancer cells, respectively. These structures provide a platform for annotating the cellular interactions of these human pathogens
Structural Characterization of Cuta- and Tusavirus: Insight into Protoparvoviruses Capsid Morphology
Several members of the Protoparvovirus genus, capable of infecting humans, have been recently discovered, including cutavirus (CuV) and tusavirus (TuV). To begin the characterization of these viruses, we have used cryo-electron microscopy and image reconstruction to determine their capsid structures to ~2.9 Å resolution, and glycan array and cell-based assays to identify glycans utilized for cellular entry. Structural comparisons show that the CuV and TuV capsids share common features with other parvoviruses, including an eight-stranded anti-parallel β-barrel, depressions at the icosahedral 2-fold and surrounding the 5-fold axes, and a channel at the 5-fold axes. However, the viruses exhibit significant topological differences in their viral protein surface loops. These result in three separated 3-fold protrusions, similar to the bufaviruses also infecting humans, suggesting a host-driven structure evolution. The surface loops contain residues involved in receptor binding, cellular trafficking, and antigenic reactivity in other parvoviruses. In addition, terminal sialic acid was identified as the glycan potentially utilized by both CuV and TuV for cellular entry, with TuV showing additional recognition of poly-sialic acid and sialylated Lewis X (sLeXLeXLeX) motifs reported to be upregulated in neurotropic and cancer cells, respectively. These structures provide a platform for annotating the cellular interactions of these human pathogens