2 research outputs found
Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging
In microCT imaging, there is a close relationship between the dose of radiation absorbed by animals and the image quality, or spatial resolution. Although the radiation levels used in these systems are generally non-lethal, they can induce cellular or molecular alterations that affect the experimental results. Here, we describe a dosimetric characterization of the different image acquisition modalities used by the microCT unit of the Albira microPET/SPECT/CT scanner, which is a widely used multimodal imaging system in preclinical research. The imparted dose at the animal surface (IDS) was estimated based on Boone’s polynomial interpolation method and experimental measurements using an ionization chamber and thermoluminescent dosimeters. The results indicated that the imparted dose at surface level delivered to the mice was in the 30 to 300 mGy range. For any combination of current (0.2 or 0.4 mA) and voltage (35 or 45 kV), in the Standard, Good, and Best image acquisition modalities, the dose imparted at surface level in rodents was below its threshold of deterministic effects (250 mGy); however, the High Res modality was above that threshold
Biodistribution and Tumor Uptake of <sup>67</sup>Ga-Nimotuzumab in a Malignant Pleural Mesothelioma Xenograft
Malignant pleural mesothelioma (MPM) is the most common tumor of the pulmonary pleura. It is a rare and aggressive malignancy, generally associated with continuous occupational exposure to asbestos. Only a multimodal-approach to treatment, based on surgical resection, chemotherapy and/or radiation, has shown some benefits. However, the survival rate remains low. Nimotuzumab (h-R3), an anti-EGFR (epidermal growth factor receptor) humanized antibody, is proposed as a promising agent for the treatment of MPM. The aim of this research was to implement a procedure for nimotuzumab radiolabeling to evaluate its biodistribution and affinity for EGF (epidermal growth factor) receptors present in a mesothelioma xenograft. Nimotuzumab was radiolabeled with 67Ga; radiolabel efficiency, radiochemical purity, serum stability, and biodistribution were evaluated. Biodistribution and tumor uptake imaging studies by microSPECT/CT in mesothelioma xenografts revealed constant nimotuzumab uptake at the tumor site during the first 48 h after drug administration. In vivo studies using MPM xenografts showed a significant uptake of this radioimmunoconjugate, which illustrates its potential as a biomarker that could promote its theranostic use in patients with MPM