203 research outputs found
Recommended from our members
Algorithms for network piecewise-linear programs
In this paper a subarea of Piecewise-Linear Programming named network Piecewise-Linear Programming (NPLP) is discussed. Initially the problem formulation, main efinitins and related Concepts are presented. In the sequence of the paper, four specialized algorithms for NPLP, as well as the results of a preliminary computational study, are presented
Scale-free movement patterns in termites emerge from social interactions and preferential attachments
As the number or density of interacting individuals in a social group increases, a transition can develop from uncorrelated and disordered behaviour of the individuals to a collective coherent pattern. We expand this observation by exploring the fine details of termite movement patterns to demonstrate that the value of the scaling exponent µ of a power-law describing the Lévy walk of an individual is modified collectively as the density of animals in the group changes. This effect is absent when termites interact with inert obstacles. We also show that the network of encounters and interactions among specific individuals is selective resembling a preferential attachment mechanism which is important for social networking. TeOur data suggest strongly that preferential attachments, a phenomenon not reported previously, and favourite interactions with a limited number of acquaintances are responsible for the generation of Lévy movement patterns in these social insects
Isolation and identification of broad-spectrum antagonist bacteria against pathogenic fungi of maize crop.
Fungal diseases may cause significant damage to crops worldwide, generating yield losses, poor grain quality, and health risks to humans and animals. Biological control using antagonistic bacteria offers innovative solutions for sustainable management aiming at plant protection. However, beneficial plant-microorganism interactions are particular, and few antagonists with broad-spectrum activity have been reported. In this work, two bacteria isolated from sorghum seeds were identified by partial sequencing of the 16S rRNA gene and tested in vitro for their capacity to control six important pathogenic fungi of maize: Fusarium verticillioides, Macrophomina phaseolina, Stenocarpella sp., Fusarium graminearum, Colletotrichum graminicola, and Bipolaris sp. The molecular identification revealed that the bacterial isolates belong to the genera Bacillus (strain LIS05) and Paenibacillus (strain LIS04). Both bacterial isolates inhibited the growth of all six phytopathogens by at least 49%. The isolate LIS05 showed the most significant antagonistic potential against the fungal pathogens tested, at an average of 73% inhibition. The highest antagonist activity (86.1% inhibition) was observed in the confrontation test between the isolate LIS05 and C. graminicola. In addition to the mycelial growth inhibition, the isolate LIS04 blocked the production of dark pigments by Bipolaris sp. This study showed that LIS05 and LIS04 are promising alternatives for developing integrated management strategies to control fungal diseases in maize and sorghu
Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides.
Introduction: The fungus Fusarium verticillioides significantly threatens maize crops in tropical soils. In light of this, biological control has emerged as a promising strategy to reduce fungicide costs and environmental risks. In this study, we aimed to test the antifungal activity of cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04) against F. verticillioides, thereby contributing to the development of effective biocontrol measures. Methods: The research employed a comprehensive approach. The antifungal activity of the bacterial strains was tested using cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04). The UPLC-MS evaluated the CFS to identify the main bioactive molecules involved in the inhibitory effect on F. verticillioides. Scanning electron microscopy (SEM) was used to assess the impact of CFS on spores and hyphae, and genome sequencing was conducted to identify the genes involved in biological control. These robust methodologies ensure the reliability and validate our findings. Results: The CFS of the four strains demonstrated significant inhibition of fungal growth. The UPLC-MS analysis revealed the presence of lipopeptides with antifungal activity, including surfactin and fengycins A and B expressed by the three strains of Bacillus velezensis and iturin A expressed by strains LIS05 and IM14. For Paenibacillus ottowii, fusaricidins, ABCDE, and five previously unreported lipopeptides were detected. Scanning electron microscopy (SEM) showed that treatments with CFS led to significant distortion and breakage of the F. verticillioides hyphae, in addition to the formation of cavities in the membrane. Genome mining confirmed the presence of genes coding for the lipopeptides identified by UPLC-MS, including the gene for iturin in CTO2. Genomic sequencing revealed that CT02, IM14, and LIS05 belong to different strains of Bacillus velezensis, and LIS04 belongs to Paenibacillus ottowii, a species recently described. Discussion: The four bacterial strains, including three novel strains identified as Bacillus velezensis and one as the recently described species Paenibacillus ottowii, demonstrate significant potential as biocontrol agents for managing fungal disease. This finding underscores the novelty and potential impact of our research
Atividade de micro-organismos solubilizadores de fosfato de ferro em resíduo industrial.
FertBio 2016
Cosmoglobe: Towards end-to-end CMB cosmological parameter estimation without likelihood approximations
We implement support for a cosmological parameter estimation algorithm as
proposed by Racine et al. (2016) in Commander, and quantify its computational
efficiency and cost. For a semi-realistic simulation similar to Planck LFI 70
GHz, we find that the computational cost of producing one single sample is
about 60 CPU-hours and that the typical Markov chain correlation length is
100 samples. The net effective cost per independent sample is 6 000
CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours
for Planck LFI and WMAP in Cosmoglobe Data Release 1. Thus, although
technically possible to run already in its current state, future work should
aim to reduce the effective cost per independent sample by at least one order
of magnitude to avoid excessive runtimes, for instance through multi-grid
preconditioners and/or derivative-based Markov chain sampling schemes. This
work demonstrates the computational feasibility of true Bayesian cosmological
parameter estimation with end-to-end error propagation for high-precision CMB
experiments without likelihood approximations, but it also highlights the need
for additional optimizations before it is ready for full production-level
analysis.Comment: 10 pages, 8 figures. Submitted to A&
The BINGO project: IV. Simulations for mission performance assessment and preliminary component separation steps
Aims. The large-scale distribution of neutral hydrogen (HI) in the Universe is luminous through its 21 cm emission. The goal of the Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is to detect baryon acoustic oscillations at radio frequencies through 21 cm intensity mapping (IM). The telescope will span the redshift range 0.127<z<0.449 with an instantaneous field-of-view of 14.75 - 6.0. Methods. In this work we investigate different constructive and operational scenarios of the instrument by generating sky maps as they would be produced by the instrument. In doing this we use a set of end-to-end IM mission simulations. The maps will additionally be used to evaluate the efficiency of a component separation method (GNILC). Results. We have simulated the kind of data that would be produced in a single-dish IM experiment such as BINGO. According to the results obtained, we have optimized the focal plane design of the telescope. In addition, the application of the GNILC method on simulated data shows that it is feasible to extract the cosmological signal across a wide range of multipoles and redshifts. The results are comparable with the standard principal component analysis method
- …