8 research outputs found
Quantification of the Benefits for Power System of Resilience Boosting Measures
Severe natural events leading to wide and intense impacts on power systems are becoming more and more frequent due to climate changes. Operators are urged to set up plans to assess the possible consequences of such events, in view of counteracting them. To this aim, the application of the resilience concept can be beneficial. The paper describes a methodology for power system resilience assessment and enhancement, aimed at quantifying both system resilience indicators evaluated for severe threats, and the benefits to resilience brought by operational and grid hardening measures. The capabilities of the methodology are demonstrated on real study cases
Probabilistic Risk-Based Security Assessment of Power Systems Considering Incumbent Threats and Uncertainties
In-depth security analyses of power systems (PSs) require to consider the vulnerabilities to natural and human-related threats, which may cause multiple dependent contingencies. On the other hand, such events often lead to high impact on the system, so that decision-making aimed to enhance security may become difficult. Introducing the uncertainty, the risk associated to each contingency can be evaluated, thus allowing to perform effective contingency ranking. This paper describes an in-depth security assessment methodology, based on an ``extended'' definition of risk (including threats, vulnerability, contingency, and impact) aimed to perform the risk assessment of the integrated power and Information and Communication Technology (ICT) systems. The results of the application to test cases and realistic PSs show the added value of the proposed approach with respect to conventional security analyses in dealing with uncertainty of threats, vulnerabilities, and system response
A Risk-Based Methodology and Tool Combining Threat Analysis and Power System Security Assessment
A thorough investigation of power system security requires the analysis of the vulnerabilities to natural and man-related threats which potentially trigger multiple contingencies. In particular, extreme weather events are becoming more and more frequent due to climate changes and often cause large load disruptions on the system, thus the support for security enhancement gets tricky. Exploiting data coming from forecasting systems in a security assessment environment can help assess the risk of operating power systems subject to the disturbances provoked by the weather event itself. In this context, the paper proposes a security assessment methodology, based on an updated definition of risk suitable for power system risk evaluations. Big data analytics can be useful to get an accurate model for weather-related threats. The relevant software (SW) platform integrates the security assessment methodology with prediction systems which provide short term forecasts of the threats affecting the system. The application results on a real wet snow threat scenario in the Italian High Voltage grid demonstrate the effectiveness of the proposed approach with respect to conventional security approaches, by complementing the conventional “N − 1” security criterion and exploiting big data to link the security assessment phase to the analysis of incumbent threats