12,366 research outputs found
Charge and Magnetic Flux Correlations in Chern-Simons Theory with Fermions
Charge and magnetic flux bearing operators are introduced in Chern-Simons
theory both in its pure form and when it is coupled to fermions. The magnetic
flux creation operator turns out to be the Wilson line. The euclidean
correlation functions of these operators are shown to be local and are
evaluated exactly in the pure case and through an expansion in the inverse
fermion mass whenever these are present. Physical states only occur in the
presence of fermions and consist of composite charge-magnetic flux carrying
states which are in general anyonic. The large distance behavior of the
correlation functions indicates the condensation of charge and magnetic flux.Comment: Latex, 17 page
Statistical transmutation of quantum bosonic strings coupled to general four-dimensional Chern-Simons theory
A bosonic string coupled to the generalized Chern-Simons theory in 3+1D
acquires a magnetic field along itself, when it is closed, and a topological
charge at its extremity, when it is open. We construct the creation operators
for the full quantum field states associated to these strings and determine the
dual algebra satisfied by them. We show that the creation operator fo the
composite state of a quantum closed bosonic string, bearing a magnetic flux,
and a topologically charged open bosonic string, possesses generalized
statistics. The relation of our results with previous approaches to the problem
is also established.Comment: 4 pages, Revtex
Explicit Bosonization of the Massive Thirring Model in 3+1 Dimensions
We bosonize the Massive Thirring Model in 3+1D for small coupling constant
and arbitrary mass. The bosonized action is explicitly obtained both in terms
of a Kalb-Ramond tensor field as well as in terms of a dual vector field. An
exact bosonization formula for the current is derived. The small and large mass
limits of the bosonized theory are examined in both the direct and dual forms.
We finally obtain the exact bosonization of the free fermion with an arbitrary
mass.Comment: Latex, 7 page
Supersymmetric free-damped oscillators: Adaptive observer estimation of the Riccati parameter
A supersymmetric class of free damped oscillators with three parameters has
been obtained in 1998 by Rosu and Reyes through the factorization of the Newton
equation. The supplementary parameter is the integration constant of the
general Riccati solution. The estimation of the latter parameter is performed
here by employing the recent adaptive observer scheme of Besancon et al., but
applied in a nonstandard form in which a time-varying quantity containing the
unknown Riccati parameter is estimated first. Results of computer simulations
are presented to illustrate the good feasibility of this approach for a case in
which the estimation is not easily accomplished by other meansComment: 8 pages, 6 figure
Quantum global vortex strings in a background field
We consider quantum global vortex string correlation functions, within the
Kalb-Ramond framework, in the presence of a background field-strength tensor
and investigate the conditions under which this yields a nontrivial
contribution to those correlation functions. We show that a background field
must be supplemented to the Kalb-Ramond theory, in order to correctly describe
the quantum properties of the vortex strings. The explicit form of this
background field and the associated quantum vortex string correlation function
are derived. The complete expression for the quantum vortex creation operator
is explicitly obtained. We discuss the potential applicability of our results
in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera
Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors
We propose a model for high-T superconductors, valid for
, that includes both the spin fluctuations of the
Cu magnetic ions and of the O doped holes. Spin-charge separation
is taken into account with the charge of the doped holes being associated to
quantum skyrmion excitations (holons) of the Cu spin background. The
holon effective interaction potential is evaluated as a function of doping,
indicating that Cooper pair formation is determined by the competition between
the spin fluctuations of the Cu background and of spins of the O
doped holes (spinons). The superconducting transition occurs when the spinon
fluctuations dominate, thereby reversing the sign of the interaction. At this
point (), the theory is supersymmetric at short distances
and, as a consequence, the leading order results are not modified by radiative
corrections. The critical doping parameter for the onset of superconductivity
at T=0 is obtained and found to be a universal constant determined by the shape
of the Fermi surface. Our theoretical values for are in good
agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure
Quantum skyrmions and the destruction of long-range antiferromagnetic order in the high-Tc superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x)
We study the destruction of the antiferromagnetic order in the high-Tc
superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x) in the framework of
the CP1-nonlinear sigma model formulation of the 2D quantum Heisenberg
antiferromagnet. The dopants are introduced as independent fermions with
appropriate dispersion relations determined by the shape of the Fermi surface.
The energy of skyrmion topological defects, which are shown to be introduced by
doping, is used as an order parameter for antiferromagnetic order. We obtain
analytic expressions for this as a function of doping which allow us to plot
the curves T_N(x_c)\times x_c and M(x)\times x, for both YBCO and LSCO, in good
quantitative agreement with the experimental data.Comment: 4 pages, revtex, 5 embeeded figure
- …