1,122 research outputs found

    White dwarfs with a surface electrical charge distribution: Equilibrium and stability

    Full text link
    The equilibrium configuration and the radial stability of white dwarfs composed of charged perfect fluid are investigated. These cases are analyzed through the results obtained from the solution of the hydrostatic equilibrium equation. We regard that the fluid pressure and the fluid energy density follow the relation of a fully degenerate electron gas. For the electric charge distribution in the object, we consider that it is centralized only close to the white dwarfs' surfaces. We obtain larger and more massive white dwarfs when the total electric charge is increased. To appreciate the effects of the electric charge in the structure of the star, we found that it must be in the order of 1020[C]10^{20}\,[{\rm C}] with which the electric field is about 1016[V/cm]10^{16}\,[{\rm V/cm}]. For white dwarfs with electric fields close to the Schwinger limit, we obtain masses around 2M2\,M_{\odot}. We also found that in a system constituted by charged static equilibrium configurations, the maximum mass point found on it marks the onset of the instability. This indicates that the necessary and sufficient conditions to recognize regions constituted by stable and unstable equilibrium configurations against small radial perturbations are respectively dM/dρc>0dM/d\rho_c>0 and dM/dρc<0dM/d\rho_c<0.Comment: This is a preprint. The original paper will be published in EPJ

    Investigation of the existence of hybrid stars using Nambu-Jona-Lasinio models

    Full text link
    We investigate the hadron-quark phase transition inside neutron stars and obtain mass-radius relations for hybrid stars. The equation of state for the quark phase using the standard NJL model is too soft leading to an unstable star and suggesting a modification of the NJL model by introducing a momentum cutoff dependent on the chemical potential. However, even in this approach, the instability remains. In order to remedy the instability we suggest the introduction of a vector coupling in the NJL model, which makes the EoS stiffer, reducing the instability. We conclude that the possible existence of quark matter inside the stars require high densities, leading to very compact stars.Comment: 4 pages, 2 figures; prepared for IV International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, 4-8 Oct 200
    corecore