56 research outputs found
Cellular polarity in aging: role of redox regulation and nutrition
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.PTDC/QUI/69466/2006PTDC/QUI-BIQ/104311/2008PTDC/BIA-PRO/101624/2008PEst-OE/QUI/UI0612/201
Tubulin post-translational modifications: the elusive roles of acetylation
This work was funded by Instituto Politécnico de Lisboa IPL/2021/ObeCil_ESTeSL and IPL/2022/WintCilGlu_ESTeSL.Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration, division, and cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being an MT stabilizer and a typical PTM of long-lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.info:eu-repo/semantics/publishedVersio
From cilia to cancer: the two splicing variants of the human TBCCD1 gene
Funds are from Instituto Politécnico de Lisboa, IPL/2017/CILIOPAT/ESTeSL.Almost all human genes that contain multiple exons undergo alternative splicing. Therefore, a single gene can originate multiple mRNA isoforms which causes a dramatic increase in the variability of the expected proteome. Noteworthy, phenotypic variability and disease susceptibility in human populations are related to alternative splicing. Published work from our group identified a new human centrosomal protein, TBCC domain-containing 1 (TBCCD1). Our studies revealed that this gene undergoes alternative splicing producing at least two transcripts encoding proteins. Here we analyze the differential functions of the two splicing variants (TBCCD1v1 and TBCCD1v2). Both variants present distinct cellular localization being TBCCD1v1 essentially centrosomal, whereas TBCCD1v2 is cytoplasmatic. The screening for TBCCD1v2 proximity interactome using BioID identified 19 proteins that functionally group in kinetochore, MT/cilia, and DNA-binding proteins. Striking, the overexpression of TBCCD1v2 decreases the levels of the kinetochore protein CENP-M, a protein upregulated in tumors. On the other hand, the TBCCD1v1 is involved in MT organization and is required to maintain the distal structure of the mother centriole. Our BioID screening for TBCCD1v1 interactors revealed 82 distinct proteins including several well-known proteins encoded by ciliopathy genes. A wider analysis of how TBCCD1v1 levels impact cellular physiological proteome showed that the group of proteins presenting fold changes in their levels vs control cells is enriched in proteins involved in focal adhesions, namely HSPA5/GRP-78/BiP, PDIA3, RPS10, MSN, TGM2, and PPP1R12A. Together our results show that we are still far from having a complete picture of the functional importance of TBCCD1 and how its deregulation may be associated not only with the development of ciliopathies but also with more common diseases like cancer.info:eu-repo/semantics/publishedVersio
Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels
The nuclear levels of thioredoxin reductase 1, gamma-H2AX, and yap are modulated by primary cilia in response to high glucose levels
This work was funded by Instituto Politécnico de Lisboa IPL/2021/ ObeCil_ESTeSL & IPL/ WintCilGlu_ESTeSL. H&TRC authors gratefully acknowledge the FCT/MCTES national support through the UIDB/05608/2020 and UIDP/05608/2020.Diabetes is a condition characterized by impaired regulation of blood glucose levels, leading to various complications such as hypertension, cardiovascular disease, and retinopathy. Diabetic retinopathy (DR), caused by a disrupted retinal blood barrier, is associated with oxidative stress resulting from dysregulated glucose levels in the retina. The primary cilium, an organelle involved in energy balance and glucose homeostasis, has been implicated in the development of various diseases known as ciliopathies, which include overlapping phenotypes such as obesity, diabetes, and retinopathy. This study aims to investigate the impact of high glucose levels on primary cilia assembly in retinal pigment epithelium (RPE-1) cell cultures and explore the role of cilia in the cellular response to high glucose levels. RPE-1 cells were grown in media supplemented with different glucose concentrations (5 mM, 25 mM, and 5 mM glucose + 20 mM mannitol), and cilia assembly was induced before or after glucose supplementation. The results revealed that glucose supplementation did not affect the number of ciliated cells, but cells supplemented with 25 mM glucose exhibited shorter cilia. To understand the
role of cilia in response to high glucose levels, the nuclear levels of thioredoxin reductase 1 (TRXR1), a key enzyme involved in combating oxidative stress triggered by hyperglycemia, were evaluated. Additionally, γH2AX, a marker of DNA breaks and cellular senescence, and YAP, a Hippo pathway effector, were examined. It was observed that glucose supplementation, particularly at high levels (25 mM), influenced the nuclear
levels of TRXR1, γH2AX, and YAP. Notably, the presence of cilia modulated the cellular response to high glucose levels, modulating the levels of these proteins. These preliminary findings indicate that primary cilia significantly influence the cellular response to high glucose concentrations, which are known to induce oxidative stress and potentially contribute to the development of DR.info:eu-repo/semantics/publishedVersio
Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.Peer Reviewe
The maintenance of centriole appendages and motile cilia basal body anchoring relies on TBCCD1
Centrosomes are organelles consisting of two structurally and functionally distinct centrioles, with the mother centriole having complex distal (DA) and subdistal appendages (SDA). Despite their importance, how appendages are assembled and maintained remains unclear. This study investigated human TBCCD1, a centrosomal protein essential for centrosome positioning, to uncover its localization and role at centrioles. We found that TBCCD1 localizes at both proximal and distal regions of the two centrioles, forming a complex structure spanning from SDA to DA and extending inside and outside the centriole lumen. TBCCD1 depletion caused centrosome mispositioning, which was partially rescued by taxol, and the loss of microtubules (MTs) anchored to centrosomes. TBCCD1 depletion also reduced levels of SDA proteins involved in MT anchoring such as Centriolin/CEP110, Ninein, and CEP170. Additionally, TBCCD1 was essential for the correct positioning of motile cilia basal bodies and associated structures in Paramecium. This study reveals that TBCCD1 is an evolutionarily conserved protein essential for centriole and basal body localization and appendage assembly and maintenance. A BioID screening also linked TBCCD1 to ciliopathy-associated protein networks.info:eu-repo/semantics/publishedVersio
Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences
Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (lo) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, Zym has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy of an aminostyryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often suggested that, in eukaryotes, areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.Peer Reviewe
Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment
PD/BD/135264/2017 UID/DTP/04138/2020 UIDP/04138/2020 UIDP/04378/2020 UIDB/04378/2020 LA/P/0140/2020 UIDB/50006/2020 UIDB/00100/2020Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.publishersversionpublishe
“Healthy Life”: interaction of polyphenols with lipid bilayers and their effects in human cells
This work concerns the transversal project of the CQB thematic line: “Healthy Life: Molecular Interventions and Regulation Mechanisms”. Biologically active plant phytochemicals have a broad range of pharmacological effects including anticarcinogenic, antimicrobial, antioxidant, and anti-inflammatory activity. [1] Notwithstanding the possibility of having a specific target, phytochemicals must interact and permeate through cell membranes in the body. Indeed, it was suggested that those molecules insert into the membranes and thereby may have a promiscuous activity by changing structural properties of lipid bilayers. [2] Some well-known phenolic acids such as caffeic (CA), rosmarinic (RA) and chlorogenic (CGA) acids, whose identification in plant extracts has been achieved by CQB research groups, were selected to be addressed in first place. All the phenolic acids studied have low lipophilicity and among them, RA was the only one with a partition to biological membrane models measurable by fluorescence spectroscopy, as opposed to CA and CGA. Cyclic voltammetry measurements using an electrode modified with a supported lipid bilayer, also indicated a higher affinity of RA to lipid membranes. In addition, oxidation/reduction of the phenolic acids displayed higher reversibility in the lipid milieu than in the aqueous bulk. Indeed, the reduced form of phenolic acids was unstable in aqueous solution. In particular, in DMEM/F-12 cell culture media, a colour change observed after incubation with each compound could be reverted by the addition of a reducing agent. The higher reversibility of phenolic acids oxidation/reduction, once they were inserted in the lipid membrane, may contribute to the stability of the compounds and prevent the formation of degradation products. Molecular dynamics (MD) simulations are being performed to probe the location and orientation of these and other selected compounds in lipid bilayers. The influence of the phenolic acids in the cytoskeleton organization, both actin filaments and microtubules, of a human retinal pigment epithelial cell line (RPE1) was also investigated. All compounds induced concentration and time dependent effects, translated in structural alterations mainly at the cell periphery, and also in the perturbation of cell division. Moreover, it was not evident that these compounds induce apoptosis under the conditions tested. RA seemed to induce evident effects at earlier times and at lower concentrations, as compared to CA and CGA. This higher sensibility of RPE1 cells to RA correlates with the higher affinity of this compound to the lipid bilayer.info:eu-repo/semantics/publishedVersio
- …