7,728 research outputs found
Smectic ordering in liquid crystal - aerosil dispersions II. Scaling analysis
Liquid crystals offer many unique opportunities to study various phase
transitions with continuous symmetry in the presence of quenched random
disorder (QRD). The QRD arises from the presence of porous solids in the form
of a random gel network. Experimental and theoretical work support the view
that for fixed (static) inclusions, quasi-long-range smectic order is destroyed
for arbitrarily small volume fractions of the solid. However, the presence of
porous solids indicates that finite-size effects could play some role in
limiting long-range order. In an earlier work, the nematic - smectic-A
transition region of octylcyanobiphenyl (8CB) and silica aerosils was
investigated calorimetrically. A detailed x-ray study of this system is
presented in the preceding Paper I, which indicates that pseudo-critical
scaling behavior is observed. In the present paper, the role of finite-size
scaling and two-scale universality aspects of the 8CB+aerosil system are
presented and the dependence of the QRD strength on the aerosil density is
discussed.Comment: 14 pages, 10 figures, 1 table. Companion paper to "Smectic ordering
in liquid crystal - aerosil dispersions I. X-ray scattering" by R.L. Leheny,
S. Park, R.J. Birgeneau, J.-L. Gallani, C.W. Garland, and G.S. Iannacchion
Dirac Nodes and Quantized Thermal Hall Effect in the Mixed State of d-wave Superconductors
We consider the vortex state of d-wave superconductors in the clean limit.
Within the linearized approximation the quasiparticle bands obtained are found
to posess Dirac cone dispersion (band touchings) at special points in the
Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian
that we call T_Dirac. Moreover, for vortex lattices that posess inversion
symmetry, it is shown that there is always a Dirac cone centered at zero energy
within the linearized theory. On going beyond the linearized approximation and
including the effect of the smaller curvature terms (that break T_Dirac), the
Dirac cone dispersions are found to acquire small gaps (0.5 K/Tesla in YBCO)
that scale linearly with the applied magnetic field. When the chemical
potential for quasiparticles lies within the gap, quantization of the
thermal-Hall conductivity is expected at low temperatures i.e. kappa_{xy}/T =
n[(pi k_B)^2/(3h)] with the integer `n' taking on values n=+2, -2, 0. This
quantization could be seen in low temperature thermal transport measurements of
clean d-wave superconductors with good vortex lattices.Comment: (23 pages in all [7 pages in appendices], 9 figures
The Study of TeV Variability and Duty Cycle of Mrk 421 from 3 Years of Observations with the Milagro Observatory
TeV flaring activity with time scales as short as tens of minutes and an
orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421).
The TeV emission from Mrk 421 is believed to be produced by leptonic
synchrotron self-Compton (SSC) emission. In this scenario, correlations between
the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly
explained and the activity (measured as duty cycle) of the source at TeV
energies is expected to be equal or less than that observed in X-rays if only
SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish
limits on its variability at different time scales, we continuously observed
Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a
statistical significance of 7.1 standard deviations between 2005 September 21
and 2008 March 15. The observed spectrum is consistent with previous
observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies
above 1 TeV for different hypothesis of the baseline flux and for different
flare selections and we compare our results with the X-ray duty cycle estimated
by Resconi et al. 2009. The robustness of the results is discussed.Comment: 27 pages, 6 figures, ApJ accepte
Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments
We attempt to provide physical interpretations of light-induced desorption
phenomena that have recently been observed for alkali atoms on glass surfaces
of alkali vapor cells used in atomic physics experiments. We find that the
observed desorption phenomena are closely related to recent studies in surface
science, and can probably be understood in the context of these results. If
classified in terms of the photon-energy dependence, the coverage and the
bonding state of the alkali adsorbates, the phenomena fall into two categories:
It appears very likely that the neutralization of isolated ionic adsorbates by
photo-excited electron transfer from the substrate is the origin of the
desorption induced by ultraviolet light in ultrahigh vacuum cells. The
desorption observed in low temperature cells, on the other hand, which is
resonantly dependent on photon energy in the visible light range, is quite
similar to light-induced desorption stimulated by localized electronic
excitation on metallic aggregates. More detailed studies of light-induced
desorption events from surfaces well characterized with respect to alkali
coverage-dependent ionicity and aggregate morphology appear highly desirable
for the development of more efficient alkali atom sources suitable to improve a
variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of
Surface Science and Nanotechnology at
http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl
QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via "algebraic" Fermi liquid
High- cuprates differ from conventional superconductors in three crucial
aspects: the superconducting state descends from a strongly correlated
Mott-Hubbard insulator, the order parameter exhibits d-wave symmetry and
superconducting fluctuations play an all important role. We formulate a theory
of the pseudogap state in the cuprates by taking the advantage of these unusual
features. The effective low energy theory within the pseudogap phase is shown
to be equivalent to the (anisotropic) quantum electrodynamics in (2+1)
space-time dimensions (QED). The role of Dirac fermions is played by the
nodal BdG quasiparticles while the massless gauge field arises through
unbinding of quantum vortex-antivortex degrees of freedom. A detailed
derivation of this QED theory is given and some of its main physical
consequences are inferred for the pseudogap state. We focus on the properties
of symmetric QED and propose that inside the pairing protectorate it
assumes the role reminiscent of that played by the Fermi liquid theory in
conventional metals.Comment: 31 pages, 4 figures; replaced with revised versio
Ground State Vortex Lattice Structures in d-wave Superconductors
We show in a realistic symmetry gap model for a cuprate
superconductor that the clean vortex lattice has discontinuous structural
transitions (at and near T=0), as a function of the magnetic field along
the c-axis. The transitions arise from the singular nonlocal and anisotropic
susceptibility of the superconductor to the perturbation
caused by supercurrents associated with vortices. The susceptibility, due to
virtual Dirac quasiparticle-hole excitation, is calculated carefully, and leads
to a ground state transition for the triangular lattice from an orientation
along one of the crystal axis to one at 45 to them, i.e, along the gap zero
direction. The field scale is seen to be 5 Tesla , where is the gap maximum, is the
nearest neighbour hopping, is the lattice constant, and is the
flux quantum. At much higher fields () there is a discontinuous
transition to a centred square structure. The source of the differences from
existing calculations, and experimental observability are discussed, the latter
especially in view of the very small (a few degrees per vortex) differences
in the ground state energy.Comment: To be published in Phys. Rev.
Study of the reaction pbar p -> phi phi from 1.1 to 2.0 GeV/c
A study has been performed of the reaction pbar p -> 4K using in-flight
antiprotons from 1.1 to 2.0 GeV/c incident momentum interacting with a hydrogen
jet target. The reaction is dominated by the production of a pair of phi
mesons. The pbar p -> phi phi cross section rises sharply above threshold and
then falls continuously as a function of increasing antiproton momentum. The
overall magnitude of the cross section exceeds expectations from a simple
application of the OZI rule by two orders of magnitude. In a fine scan around
the xi/f_J(2230) resonance, no structure is observed. A limit is set for the
double branching ratio B(xi -> pbar p) * B(xi -> phi phi) < 6e-5 for a spin 2
resonance of M = 2.235 GeV and Width = 15 MeV.Comment: 13 pages, 13 figures, 2 tables, Latex. To be published in Phys. Rev.
- …