848 research outputs found

    Reply to Comment on "Ising Spin Glasses in a Magnetic Field"

    Full text link
    The problem of the survival of a spin glass phase in the presence of a field has been a challenging one for a long time. To date, all attempts using equilibrium Monte Carlo methods have been unconclusive. In their comment to our paper, Marinari, Parisi and Zuliani use out-of-equilibrium measurements to test for an Almeida-Thouless line. In our view such a dynamic approach is not based on very solid foundations in finite dimensional systems and so cannot be as compelling as equilibrium approaches. Nevertheless, the results of those authors suggests that there is a critical field near B=0.4 at zero temperature. In view of this quite small value (compared to the mean field value), we have reanalyzed our data. We find that if finite size scaling is to distinguish between that small field and a zero field, we would need to go to lattice sizes of about 20x20x20.Comment: reply to comment cond-mat/9812401 on ref. cond-mat/981141

    Low T Dynamical Properties of Spin Glasses Smoothly Extrapolate to T=0

    Full text link
    We compare ground state properties of 3D Ising Spin Glasses with Gaussian couplings with results from off-equilibrium numerical simulations at non zero (but low) temperatures. We find that the non-zero temperature properties of the system smoothly connect to the T=0 behavior, confirming the point of view that results established at T=0 typically also give relevant information about the T≠0T\ne 0 physics of the system.Comment: 14 pages and 4 ps figure

    Numerical Simulations of the 4D Edwards-Anderson Spin Glass with Binary Couplings

    Full text link
    We present numerical results that allow a precise determination of the transition point and of the critical exponents of the 4D Edwards-Anderson Spin Glass with binary quenched random couplings. We show that the low T phase undergoes Replica Symmetry Breaking. We obtain results on large lattices, up to a volume V=104V=10^4: we use finite size scaling to show the relevance of our results in the infinite volume limit.Comment: 18 pages + 17 figures, revised bibliography and minor typos. Added Journal Re

    3D Spin Glass and 2D Ferromagnetic XY Model: a Comparison

    Full text link
    We compare the probability distributions and Binder cumulants of the overlap in the 3D Ising spin glass with those of the magnetization in the ferromagnetic 2D XY model. We analyze similarities and differences. Evidence for the existence of a phase transition in the spin glass model is obtained thanks to the crossing of the Binder cumulant. We show that the behavior of the XY model is fully compatible with the Kosterlitz-Thouless scenario. Finite size effects have to be dealt with by using great care in order to discern among two very different physical pictures that can look very similar if analyzed without large attention.Comment: 14 pages and 6 figures. Also available at http://chimera.roma1.infn.it/index_papers_complex.htm

    Make life simple: unleash the full power of the parallel tempering algorithm

    Full text link
    We introduce a new update scheme to systematically improve the efficiency of parallel tempering simulations. We show that by adapting the number of sweeps between replica exchanges to the canonical autocorrelation time, the average round-trip time of a replica in temperature space can be significantly decreased. The temperatures are not dynamically adjusted as in previous attempts but chosen to yield a 50% exchange rate of adjacent replicas. We illustrate the new algorithm with results for the Ising model in two and the Edwards-Anderson Ising spin glass in three dimensionsComment: 4 pages, 5 figure

    Small Window Overlaps Are Effective Probes of Replica Symmetry Breaking in 3D Spin Glasses

    Full text link
    We compute numerically small window overlaps in the three dimensional Edwards Anderson spin glass. We show that they behave in the way implied by the Replica Symmetry Breaking Ansatz, that they do not qualitatively differ from the full volume overlap and do not tend to a trivial function when increasing the lattice volume. On the contrary we show they are affected by small finite volume effects, and are interesting tools for the study of the features of the spin glass phase.Comment: 9 pages plus 5 figure

    On the Phase Structure of the 3D Edwards Anderson Spin Glass

    Full text link
    We characterize numerically the properties of the phase transition of the three dimensional Ising spin glass with Gaussian couplings and of the low temperature phase. We compute critical exponents on large lattices. We study in detail the overlap probability distribution and the equilibrium overlap-overlap correlation functions. We find a clear agreement with off-equilibrium results from previous work. These results strongly support the existence of a continuous spontaneous replica symmetry breaking in three dimensional spin glasses.Comment: 30 pages and 17 figures. Final version to be published in PR

    Equilibrium valleys in spin glasses at low temperature

    Full text link
    We investigate the 3-dimensional Edwards-Anderson spin glass model at low temperature on simple cubic lattices of sizes up to L=12. Our findings show a strong continuity among T>0 physical features and those found previously at T=0, leading to a scenario with emerging mean field like characteristics that are enhanced in the large volume limit. For instance, the picture of space filling sponges seems to survive in the large volume limit at T>0, while entropic effects play a crucial role in determining the free-energy degeneracy of our finite volume states. All of our analysis is applied to equilibrium configurations obtained by a parallel tempering on 512 different disorder realizations. First, we consider the spatial properties of the sites where pairs of independent spin configurations differ and we introduce a modified spin overlap distribution which exhibits a non-trivial limit for large L. Second, after removing the Z_2 (+-1) symmetry, we cluster spin configurations into valleys. On average these valleys have free-energy differences of O(1), but a difference in the (extensive) internal energy that grows significantly with L; there is thus a large interplay between energy and entropy fluctuations. We also find that valleys typically differ by sponge-like space filling clusters, just as found previously for low-energy system-size excitations above the ground state.Comment: 10 pages, 8 figures, RevTeX format. Clarifications and additional reference

    On the Effects of a Bulk Perturbation on the Ground State of 3D Ising Spin Glasses

    Full text link
    We compute and analyze couples of ground states of 3D spin glasses before and after applying a volume perturbation which adds to the Hamiltonian a repulsion from the true ground state. The physical picture based on Replica Symmetry Breaking is in excellent agreement with the observed behavior.Comment: 4 pages including 5 .ps figure

    4D Spin Glasses in Magnetic Field Have a Mean Field like Phase

    Full text link
    By using numerical simulations we show that the 4D J=±1J=\pm 1 Edwards Anderson spin glass in magnetic field undergoes a mean field like phase transition. We use a dynamical approach: we simulate large lattices (of volume VV) and work out the behavior of the system in limit where both tt and VV go to infinity, but where the limit V→∞V \to \infty is taken first. By showing that the dynamic overlap qq converges to a value smaller than the static one we exhibit replica symmetry breaking. The critical exponents are compatible with the ones obtained by mean field computations.Comment: Physrev format, 5 ps figures include
    • …
    corecore