6 research outputs found

    The Content of Toxic Metals in Agricultural Produce near a Coal Mine: Case Study KCB in Lazarevac, Serbia

    No full text
    The monitoring and analysis of concentrations of toxic metals (lead and cadmium) in soils and crops indicate that farmland in Serbia is generally not polluted, and the quality of soils is naturally good. Such soils are therefore suitable for organic farming. All noted instances of contamination by toxic metals are of a local nature only, and the result of fertilizers and pesticides, municipal waste, exhaust gases, nearby production facilities, smelting plants, mines, tailings ponds, etc. Locations of this type need to be monitored regularly, and the status of the soil and crops assessed. The results presented in this paper place special emphasis on lead and cadmium. In this regard, the sampling of 67 plant foodstuffs that are being grown in BaroÅ”evac village, located in the immediate vicinity of the Kolubara coal mine, was carried out. Fruit samples represented 14.9% and vegetable samples 85.1% of the total sample. The heavy metal content (lead/cadmium) in seven samples was above the limits prescribed by the Regulations. Overall exposure of the adult population of BaroÅ”evac, calculated on the basis of all samples (67 in total), was 0.89 Āµg lead per kg of body weight per week, representing only 3.5% provisional tolerable weekly intake (PTWI), and 0.46 cadmium per kg of body weight, which amounts to 6.7% PTWI. Both values point to the fact that the risk is low, even in the case of populations with high exposure to these toxic metals. This suggests that sustainable development may be possible in the near future

    Karst groundwater budget and discharge regime of Banja Spring near Petnica

    No full text
    Detailed hydrological and hydrogeological assessments of karst spring discharge require information about the groundwater regime in the study area/watershed. However, groundwater regime monitoring is often organized locally and sporadically, as required for specific studies or projects, and seldom lasts longer than one year. On the other hand, if time series of quantitative parameters are shorter than 15 years, the watershed is considered to be ungauged. As a result, discharge regime and karst aquifer budget assessments of ungauged watersheds can be misleading. To minimize water budget assessment errors, available time series need to be extended as far as possible. Regression models are commonly used to extend, simulate or fill gaps in existing time series. The paper presents an application of multiple linear regression to extend the existing time series of mean monthly discharges of Banja Spring (at Petnica, western Serbia), in order to cover the entire study period (1960-2006)

    Assessment of the discharge regime and water budget of Belo Vrelo (source of the ToliŔnica River, central Serbia)

    No full text
    A sufficiently long spring discharge regime monitoring data set allows for a large number of analyses, to better understand the process of transformation of precipitation into a discharge hydrograph. It is also possible to determine dynamic groundwater volumes in a karst spring catchment area, the water budget equation parameters and the like. It should be noted that a sufficiently long data set is deemed to be a continuous spring discharge time series of more than 30 years. Such time series are rare in Serbia. They are generally much shorter (less than 15 years), and the respective catchment areas therefore fall into the ā€œungaugedā€ category. In order to extend existing karst spring discharge time series, we developed a model whose outputs, apart from mean monthly spring discharges, include daily real evapotranspiration rates, catchment size and dynamic volume variation during the analytical period. So far the model has solely been used to assess the discharge regime and water budget of karst springs. The present paper aims to demonstrate that the model also yields good results in the case of springs that drain aquifers developed in marbles. Belo Vrelo (ā€œWhite Springā€, source of the ToliÅ”nica River), which drains marbles and marbleized limestones and dolomites of Čemerno Mountain, was selected for the present case study. [OI-176022
    corecore