190 research outputs found
Carvão pirogênico como condicionante substrato de mudas de Tachigali vulgaris L.G. Silva & H.C. Lima.
Este estudo teve como objetivo verificar a eficiência de carvão vegetal pirogênico como condicionante de substrato para o desenvolvimento de mudas florestais de alto vigor, testando-se o carvoeiro (Tachigali vulgaris) como espécie representativa do Bioma Cerrado. Foram tomados como modelo de produtividade os solos de elevada capacidade de troca catiônica com Horizonte A antrópico da Amazônia (Terras Pretas de Índio), ricos em carbono pirogênico derivado de carvão vegetal. O experimento foi realizado no viveiro da Universidade do Estado de Mato Grosso, no município de Nova Xavantina-MT. Foram utilizadas quatro concentrações de carvão de eucalipto (Eucalyptus sp.) com 5; 12,5; 25 e 50% do volume total do substrato base e 0% como testemunha. Foi avaliada a porcentagem de emergência no início do experimento. Durante oito meses, a cada 30 dias, foi contado o número de folhas e medida a altura total das mudas. No oitavo mês foi medido o diâmetro do coleto e determinada à massa seca da raiz e da parte aérea. Os tratamentos e a testemunha apresentaram emergência superior a 80%, não havendo influência do carvão. Entretanto, o carvão vegetal incrementou significativamente a altura das mudas, o número de folhas, o diâmetro do coleto e a massa seca radicular e da parte aérea, o que ficou evidenciado pela forte correlação positiva com as concentrações de carvão. Portanto, o carvão vegetal pirogênico é uma alternativa viável como condicionante de origem biológica do substrato para a produção de mudas potencialmente mais resistentes, requerimento importante para plantios em campo sob condições mais severas, como na recuperação de áreas degradadas no Bioma Cerrado
Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵N:¹⁴N measurements
Background: Patterns in tropical forest nitrogen cycling are poorly understood. In particular, the extent to which leguminous trees in these forests fix nitrogen is unclear.
Aims: We aimed to determine factors that explain variation in foliar δ¹⁵N (δ¹⁵NF) for Amazon forest trees, and to evaluate the extent to which putatively N₂-fixing Fabaceae acquire nitrogen from the atmosphere.
Methods: Upper-canopy δ¹⁵NF values were determined for 1255 trees sampled across 65 Amazon forest plots. Along with plot inventory data, differences in δ¹⁵NF between nodule-forming Fabaceae and other trees were used to estimate the extent of N² fixation.
Results: δ¹⁵NF ranged from −12.1‰ to +9.3‰. Most of this variation was attributable to site-specific conditions, with extractable soil phosphorus and dry-season precipitation having strong influences, suggesting a restricted availability of nitrogen on both young and old soils and/or at low precipitation. Fabaceae constituted fewer than 10% of the sampled trees, and only 36% were expressed fixers. We estimated an average Amazon forest symbiotic fixation rate of 3 kg N ha¯¹ year‾¹.
Conclusion: Plant δ¹⁵N indicate that low levels of nitrogen availability are only likely to influence Amazon forest function on immature or old weathered soils and/or where dry-season precipitation is low. Most Fabaceae species that are capable of nodulating do not fix nitrogen in Amazonia
Activated biochar-based organomineral fertilizer delays nitrogen release and reduces N2O emission.
Leaching and nitrous oxide (N2O) emissions can represent substantial nitrogen (N) losses from chemical fertilizers, and slow-release fertilizers (SRFs) can mitigate these effects. Thus, biochar can be an alternative from an agronomic and environmental point of view to synthesize SRFs due to its physicochemical characteristics. We investigated the effect of nitrogenous organomineral fertilizers (OMF-N) formulated based on activated biochar on N losses by leaching and N2O emissions. The OMF-N were developed from a dry mechanical pelleting process with different biochar and urea proportions (2:1; 1:2, and 1:4). Three experiments were conducted using four fertilizer sources (urea, OMF-N 2:1, OMF-N 1:2, and OMF-N 1:4): i. to analyze the kinetics of N release from OMF-N at times: 5, 15, 30, 60, 90, and 120 min; ii. for N2O emission analysis determined at 3, 6, 10, 14, 24, 44, 54, 64, 74, 84, 104, and 118 days after application to the soil; and iii. for a double factorial design that was adopted to analyze N leaching, consisting of the combination of applying 160 kg N ha−1 of fertilizers in PVC columns at different depths (20, 40, 60, and 80 cm) and analyzed at five times (1, 7, 14, 21, and 28 days). FTIR spectroscopic analysis, specific surface area, porosity, and surface morphology showed physicochemical interactions of N of the OMF with biochar; the N from the OMF interacts physically and chemically binds to the functional surfaces of biochar, delaying the dissolution flow. The OMF-N proved capable of retaining 48% to 60% more NH4 + and reduced the release of Ntotal from urea from 27% to 60%, as well as reduced N2O emissions from 47% to 66%. Although absolute CO2 emissions intensified with the application of OMF-N, its use provides C sequestration in the soil to due to the recalcitrant C of the biochar, which results in a positive input-output balance in the system. The NO3 − concentration profiles revealed that the OMF-N application was able to reduce leaching in the soil to a depth of 80 cm. These studies enabled better understanding of the processes involved in the biochar:urea interaction and revealed that biochar can be used as an organic matrix in the synthesis of SRF
Photosynthetic quantum efficiency in south‐eastern Amazonian trees may be already affected by climate change
Tropical forests are experiencing unprecedented high‐temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high‐temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (F v /F m ) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress. T 50 was calculated as the temperature at which F v /F m was half the maximum value. T 5 is defined as the breakpoint temperature, at which F v /F m decline was initiated. Leaf thermotolerance in the rapidly warming southern Amazonia was the highest recorded for forest tree species globally. T 50 and T 5 varied between species, with one mid‐storey species, Amaioua guianensis , exhibiting particularly high T 50 and T 5 values. While the T 50 values of the species sampled were several degrees above the maximum air temperatures experienced in southern Amazonia, the T 5 values of several species are now exceeded under present‐day maximum air temperatures
Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - How different are co-occurring savanna and forest formations?
Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna-forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence was found to be confined to a well-defined edaphic-climate envelope with soil and climate the key determinants of the relative location of forest and savanna stands. Moreover, when considered in conjunction with the appropriate water availability metrics, it emerges that soil exchangeable cations exert considerable control on woody canopy-cover extent as measured in our pan-continental (forest + savanna) data set. Taken together these observations do not lend support to the notion of alternate stable states mediated through fire feedbacks as the prime force shaping the distribution of the two dominant vegetation types of the tropical lands
Height-diameter allometry of tropical forest trees
Copyright © 2011 European Geosciences Union. This is the published version available at http://www.biogeosciences.net/8/1081/2011/bg-8-1081-2011.html doi:10.5194/bg-8-1081-2011Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:
1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap).
2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A).
3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.
Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account
- …