7 research outputs found

    Momordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice

    Get PDF
    Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW doses; all the treatments were given for a period of 11 weeks. The parameters such as body weight, fasting blood glucose, insulin, cholesterol, free fatty acid, and oral glucose tolerance tests were performed, further, at the end of the study fasting body weight, and weights of organs such as the liver, heart, and adipose tissue were measured and the liver tissue was subjected to histopathology evaluation, and insulin resistance was expressed as HOMA-IR index. Results: The high-fat diet fed C57 mice showed significant elevation of body weight (

    CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models

    Get PDF
    OBJECTIVES: AMP activated protein kinase (AMPK) regulates the coordination of anabolic and catabolic processes and is an attractive therapeutic target for T2DM, obesity and metabolic syndrome. We report the anti-hyperglycemic and anti-hyperlipidemic effects of CNX-012-570 is an orally bioavailable small molecule (molecular weight of 530 Daltons) that directly activates AMPK in DIO and db/db animal models of diabetes. METHODS: Activity and efficacy of the compound was tested in cell based as well as cell free systems in vitro. Male C57BL/6 mice fed with high fat diet (HFD) were assigned to either vehicle or CNX-012-570 (3 mg/kg, orally once a day) for 8 weeks (n = 8). Genetically diabetic db/db mice on chow diet were dosed with vehicle control or CNX-012-570 (2.5 mg/kg, orally once a day) for 6 weeks (n = 8). RESULTS: CNX-012-570 is a highly potent and orally bioavailable compound activating AMPK in both cell and cell free systems. It inhibits lipolysis (33%) and gluconeogenesis (28%) in 3T3L1 cells and rat primary hepatocytes respectively. The efficacy of the molecule was translated to both DIO and db/db animal models of diabetes. CNX-012-570 has reduced fasting blood glucose levels by 14%, body weight by 24% and fasting serum triglycerides (TG) by 24%. CNX-012-570 showed a 22% reduction in fed serum cholesterol levels and 19% increase in HDL levels. In db/db mice model, CNX-012-570 has shown 18% decrease in fed glucose and 32% decrease in fasting glucose with a 2.57% reduction in absolute HbA1c. Decrease in serum insulin and glucose AUC indicates the increased insulin sensitivity. Body weight was reduced by 13% with increased browning of adipose tissue and decreased inguinal and mesenteric fat mass. There was significant reduction in liver TG and liver total cholesterol. CONCLUSIONS: CNX-012-570 has the potential to control hyperglycemia and hyperlipidemia. It also reduces body weight gain with an additional benefit of minimizing cardiovascular risks in diabetics
    corecore