20 research outputs found

    Identification of a high incidence region for retroviral vector integration near exon 1 of the LMO2 locus

    Get PDF
    Therapeutic retroviral vector integration near the oncogene LMO2 is thought to be a cause of leukemia in X-SCID gene therapy trials. However, no published studies have evaluated the frequency of vector integrations near exon 1 of the LMO2 locus. We identified a high incidence region (HIR) of vector integration using PCR techniques in the upstream region close to the LMO2 transcription start site in the TPA-Mat T cell line. The integration frequency of the HIR was one per 4.46 × 10(4 )cells. This HIR was also found in Jurkat T cells but was absent from HeLa cells. Furthermore, using human cord blood-derived CD34(+ )cells we identified a HIR in a similar region as the TPA-Mat T cell line. One of the X-linked severe combined immunodeficiency (X-SCID) patients that developed leukemia after gene therapy had a vector integration site in this HIR. Therefore, the descriptions of the location and the integration frequency of the HIR presented here may help us to better understand vector-induced leukemogenesis

    Simultaneous Multi-Bit Recording in Fused Silica for Permanent Storage

    No full text
    In recent years, optical discs and hard disc drives have been widely used as storage media. However, the lifetime of recorded data in these media is about 100 years. On the other hand, a permanent storage system that can store data for more than 1,000 years is strongly required, especially for historically valuable data. One candidate system for permanent storage is a system using fused silica, which is thermally and chemically stable. In this paper, we reported simultaneous multi-bit recording in fused silica with a femtosecond laser and a spatial light modulator. The recording quality was evaluated using signal-to-noise ratio with an optical microscope. We recorded a four-layer sample with a dot pitch of 2.8 µm and obtained a signal-to-noise ratio greater than 15 dB. Furthermore, we confirmed that the sample had good thermal resistance at 1,000 °C for 120 min, which indicates a lifetime of over 319 million years

    Simultaneous multi-bit recording in fused silica for permanent storage

    No full text
    In recent years, optical discs and hard disc drives have been widely used as storage media. However, the lifetime of recorded data in these media is about 100 years. On the other hand, a permanent storage system that can store data for more than 1,000 years is strongly required, especially for historically valuable data. One candidate system for permanent storage is a system using fused silica, which is thermally and chemically stable. In this paper, we reported simultaneous multi-bit recording in fused silica with a femtosecond laser and a spatial light modulator. The recording quality was evaluated using signal-to-noise ratio with an optical microscope. We recorded a four-layer sample with a dot pitch of 2.8 µm and obtained a signal-to-noise ratio greater than 15 dB. Furthermore, we confirmed that the sample had good thermal resistance at 1,000 °C for 120 min, which indicates a lifetime of over 319 million years
    corecore