2,239 research outputs found
Beyond Geometry : Towards Fully Realistic Wireless Models
Signal-strength models of wireless communications capture the gradual fading
of signals and the additivity of interference. As such, they are closer to
reality than other models. However, nearly all theoretic work in the SINR model
depends on the assumption of smooth geometric decay, one that is true in free
space but is far off in actual environments. The challenge is to model
realistic environments, including walls, obstacles, reflections and anisotropic
antennas, without making the models algorithmically impractical or analytically
intractable.
We present a simple solution that allows the modeling of arbitrary static
situations by moving from geometry to arbitrary decay spaces. The complexity of
a setting is captured by a metricity parameter Z that indicates how far the
decay space is from satisfying the triangular inequality. All results that hold
in the SINR model in general metrics carry over to decay spaces, with the
resulting time complexity and approximation depending on Z in the same way that
the original results depends on the path loss term alpha. For distributed
algorithms, that to date have appeared to necessarily depend on the planarity,
we indicate how they can be adapted to arbitrary decay spaces.
Finally, we explore the dependence on Z in the approximability of core
problems. In particular, we observe that the capacity maximization problem has
exponential upper and lower bounds in terms of Z in general decay spaces. In
Euclidean metrics and related growth-bounded decay spaces, the performance
depends on the exact metricity definition, with a polynomial upper bound in
terms of Z, but an exponential lower bound in terms of a variant parameter phi.
On the plane, the upper bound result actually yields the first approximation of
a capacity-type SINR problem that is subexponential in alpha
Environmental impact of timber frame walls
Timber frame walls are increasingly applied nowadays due to the stringent energy performance requirements of buildings. The aim of this study was to investigate the environmental impact of this type of construction. Therefore, a cradle to gate analysis was used. The study consists of three consecutive steps. First the impact of the constituting materials was studied. The results show e.g. that the environmental impact of LVL studs is significantly larger than that of SLS studs or I-joists. Based on these results on material level, in the second stage three timber frame walls were designed and evaluated. All walls had the same thermal performance. When comparing the results, it was noted that the environmental impact of the wall with the highest impact is three times larger than that of the wall with the lowest impact. Finally, the study also looked at the additional impact of tapes for guaranteeing the air tightness of timber frame constructions and at the impact of fasteners. It could be concluded that the impact of tapes is negligible when looking at the total impact of the wall (less than 1%). The fasteners on the other hand, lead to an increase in environmental impact with almost 20%
CHEK2 1100delC and polygenic susceptibility to breast cancer and colorectal cancer
Approximately 15-25% of breast cancers are identified in women with a family history of breast cancer. Yet, germline mutations in the currently known breast cancer susceptibility genes account for only one-third of familial breast cancer cases. In 2002, our research group had identified the CHEK2 1100delC mutation as a breast cancer susceptibility allele. It was estimated that this mutation confers an approximately 2-fold increased breast cancer risk for female CHEK2 1100delC carriers. Although this 2-fold increased breast cancer risk had classified the CHEK2 1100delC mutation as a moderate-risk breast cancer susceptibility allele, the mutation typically was more prevalent among breast cancer families with a high-risk breast cancer inheritance pattern. Also, the CHEK2 1100delC mutation did not completely segregate with the breast cancer phenotype in the high-risk breast cancer families. Together, these observations suggested the presence of additional cance!
r susceptibility alleles in CHEK2 1100delC families.
This thesis has focused on three topics related to the CHEK2 gene and in particular the CHEK2 1100delC mutation: analysis of the CHEK2-p53 tumor suppressor pathway by mutation analysis of both genes in human breast cancer cell lines; evaluation of the association of CHEK2 1100delC with male breast cancer and colorectal cancer; and identification of genes involved in the polygenic CHEK2 cancer model by using a candidate gene approach
“Disturbing to others”: The Too Great Happiness of Alice Munro and Sophia Kovalevsky
La novela corta «Too Much Happiness», que da título a la reciente recopilación de historias de Alice Munro (Londres, Chatto & Windus, 2009; Demasiada Felicidad, trad. Flora Casas, Barcelona, Lumen, 2010) es una breve biografía de la novelista y matemática rusa Sophia Kovalevsky (1850-1891), primera mujer nombrada para una cátedra en una universidad europea (Estocolmo). En su versión de la biografía de Sophia Kovalevsky, la autora canadiense Alice Munro evoca las dificultades culturales e históricas que complicaron la carrera de Kovalevsky, al mismo tiempo que dramatiza el funcionamiento de su mente formidable. El resultado es un retrato sugerente en el que se unen la dimensión histórica y universal de la vida de Sophia Kovalevsky, una artista y científica comprometida con la búsqueda de la verdad independientemente de su contexto histórico y limitaciones
Applying a Dynamical Systems Model and Network Theory to Major Depressive Disorder
Mental disorders like major depressive disorder can be seen as complex
dynamical systems. In this study we investigate the dynamic behaviour of
individuals to see whether or not we can expect a transition to another mood
state. We introduce a mean field model to a binomial process, where we reduce a
dynamic multidimensional system (stochastic cellular automaton) to a
one-dimensional system to analyse the dynamics. Using maximum likelihood
estimation, we can estimate the parameter of interest which, in combination
with a bifurcation diagram, reflects the expectancy that someone has to
transition to another mood state. After validating the proposed method with
simulated data, we apply this method to two empirical examples, where we show
its use in a clinical sample consisting of patients diagnosed with major
depressive disorder, and a general population sample. Results showed that the
majority of the clinical sample was categorized as having an expectancy for a
transition, while the majority of the general population sample did not have
this expectancy. We conclude that the mean field model has great potential in
assessing the expectancy for a transition between mood states. With some
extensions it could, in the future, aid clinical therapists in the treatment of
depressed patients.Comment: arXiv admin note: text overlap with arXiv:1610.0504
Chest CT scoring for evaluation of lung sequelae in congenital diaphragmatic hernia survivors
Objectives Data on long-term structural lung abnormalities in survivors of congenital diaphragmatic hernia (CDH) is scarce. The purpose of this study was to develop a chest computed tomography (CT) score to assess the structural lung sequelae in CDH survivors and to study the correlation between the CT scoring and clinical parameters in the neonatal period and at 1 year of follow-up. Methods A prospective, clinical follow-up program is organised for CDH survivors at the University Hospital of Leuven including a chest CT at the age of 1 year. The CT scoring used and evaluated, named CDH-CT score, was adapted from the revised Aukland score for chronic lung disease of prematurity. Results Thirty-five patients were included. All CT scans showed some pulmonary abnormalities, ranging from very mild to severe. The mean total CT score was 16 (IQR: 9-23), with the greatest contribution from the subscores for decreased attenuation (5; IQR: 2-8), subpleural linear and triangular opacities (4; IQR: 3-5), and atelectasis/consolidation (2; IQR: 1-3). Interobserver and intraobserver agreement was very good for the total score (ICC coefficient > 0.9). Total CT score correlated with number of neonatal days ventilated/on oxygen as well as with respiratory symptoms and feeding problems at 1 year of age. Conclusion The CDH-CT scoring tool has a good intraobserver and interobserver repeatability and correlates with relevant clinical parameters. This holds promise for its use in clinical follow-up and as outcome parameter in clinical interventional studies
Distributed Approximation of Maximum Independent Set and Maximum Matching
We present a simple distributed -approximation algorithm for maximum
weight independent set (MaxIS) in the model which completes
in rounds, where is the maximum
degree, is the number of rounds needed to compute a maximal
independent set (MIS) on , and is the maximum weight of a node. %Whether
our algorithm is randomized or deterministic depends on the \texttt{MIS}
algorithm used as a black-box.
Plugging in the best known algorithm for MIS gives a randomized solution in
rounds, where is the number of nodes.
We also present a deterministic -round algorithm based
on coloring.
We then show how to use our MaxIS approximation algorithms to compute a
-approximation for maximum weight matching without incurring any additional
round penalty in the model. We use a known reduction for
simulating algorithms on the line graph while incurring congestion, but we show
our algorithm is part of a broad family of \emph{local aggregation algorithms}
for which we describe a mechanism that allows the simulation to run in the
model without an additional overhead.
Next, we show that for maximum weight matching, relaxing the approximation
factor to () allows us to devise a distributed algorithm
requiring rounds for any constant
. For the unweighted case, we can even obtain a
-approximation in this number of rounds. These algorithms are
the first to achieve the provably optimal round complexity with respect to
dependency on
Dengue Virus Entry as Target for Antiviral Therapy
Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed
- …