5 research outputs found

    Characterization of glucan-producing Leuconostoc strains isolated from sourdough

    No full text
    International audienceSourdough was previously demonstrated to be a fruitful biotope for isolation of lactic acid bacteria producing exopolysaccharides and more accurately diverse glycan polymers which have interesting applications as texturing agents or prebiotics. Characterization of polymers by (1)H and (13)C NMR spectroscopy analysis demonstrated that these strains could synthesize glucans of high structural variety and containing different amounts of alpha-(1 -> 2), alpha-(1 -> 3) and alpha-(1 -> 6) linkages. In this study, fifteen glucan-producing Leuconostoc mesenteroides and L citreum strains from sourdoughs were characterized according to carbohydrate fermentation, rep-PCR fingerprinting using (GTG)(5) primers and glycansucrase activity (soluble or cell-associated). Enzyme characterization using SOS-PAGE and in situ polymer production after incubation with sucrose correlated with synthesis of classical or alpha-(1 -> 2) branched dextrans, alternan and levan. In addition, the presence of genes coding for alternansucrase was detected by PCR and partially characterized by sequence analysis. We thus provide new information on the biodiversity of glucan production by sourdough Leuconostoc strains. (C) 2010 Elsevier B.V. All rights reserved

    Biodiversity of Exopolysaccharides Produced from Sucrose by Sourdough Lactic Acid Bacteria

    No full text
    The distribution and diversity of natural exopolysaccharides (EPS) produced from sucrose by thirty heterofermentative lactic acid bacteria strains from French traditional sourdoughs was investigated. The EPS production was found to be related to glucansucrase and fructansucrase extracellular activities. Depending on the strain, soluble and/or cell-associated glycansucrases were secreted. Structural characterization of the polymers by 1H and 13C NMR spectroscopy analysis further demonstrated a high diversity of EPS structures. Notably, we detected strains that synthesize glucans showing amazing variations in the amount of α-(1→2), α-(1→3) and α-(1→6) linkages. The representation of Leuconostoc strains which produce putative alternan polymers and α-(1→2) branched polymers was particularly high. The existence of glucan- and fructansucrase encoding genes was also confirmed by PCR detection. Sourdough was thus demonstrated to be a very attractive biotope for the isolation of lactic acid bacteria producing novel polymers which could find interesting applications such as texturing agent or prebiotics

    Characterization of Glycosyltransferase Activity of Wild-Type Leuconostoc mesenteroides Strains from Bulgarian Fermented Vegetables

    No full text
    Glycosyltransferase activity of 13 Leuconostoc mesenteroides strains isolated from Bulgarian fermented vegetables was investigated. All the strains displayed a mucoid phenotype on sucrose-containing agar media. Strains were characterized according to carbohydrate fermentation, species-specific multiple PCR using several primers, repetitive element-PCR fingerprinting using (GTG)(5) primers and glycosyltransferase activity. Level of activity and cellular localization (soluble or cell-associated) were variable among strains. Precipitation of exopolysaccharides produced from sucrose by the soluble fractions from these strains allowed recovery of only glucans and further characterization by H-1 and C-13 NMR analysis and enzymatic digestion with dextranase revealed dextran production. However, levans could be detected in presence of raffinose as fructosyl donor. Both fructosyltransferase and glucosyltransferase encoding genes were detected by PCR and both active enzymes were detected after functional characterization by SDS-PAGE electrophoresis and in situ polymer production after incubation with sucrose. This work therefore showed that concomitant production of glucosyltransferase and fructosyltransferase is widespread in L. mesenteroides strains
    corecore