18 research outputs found

    Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I.

    Get PDF
    NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed

    Implication de la télomérase dans la carcinogenèse urothéliale vésicale

    Full text link
    La télomérase, composée d'un ARN (hTR) et d'une protéine à activité transcriptase inverse (hTERT), pallie le raccourcissement des extrémités des télomères à chaque réplication. La télomérase est impliquée dans l'immortalisation cellulaire. Dans notre étude, nous avons recherché le rôle de la télomérase dans la carcinogenèse urothéliale vésicale en étudiant l'expression de hTRT par hybridation in situ et immunohistochimie dans des tumeurs et l'urothélium normal. Le niveau d'expression de hTRT est plus élevé dans les tumeurs mais aucune corrélation n'est retrouvée avec les facteurs pronostiques classiques. La carcinogenèse urothéliale fait intervenir la voie de la télomérase, et ceci probablement à une phase précoce. Dans un travail annexe sur le sarcome indifférencié (embryonnaire) hépatique, nous montrons que la télomérase n'est pas impliquée contrairement à p53.Human telomerase comprises a RNA (hTR) and a protein with reverse transcriptase activity (hTERT). Telomerase extends chromosome ends in compensation for the attrition of the telomeres during replication. Telomerase can be involved during cellular immortalisation. In our study, we explore the involvement of telomerase in bladder urothelial carcinogenesis. Expression of hTRT protein was studied respectively by in situ hybridization and immunohistochemistry in tumours and normal urothelium. The level of expression of hTR and hTERT was significantly higher in urothelial tumours than in normal urothelium. The lack of relation with the pronostic markers showed that telomerase is probably involved early in tumoral progression. In an additional work, we demonstrate that telomerase is not involved in carcinogenesis of hepatic undifferentiated (embryonal) sarcoma unlike p53.BORDEAUX2-BU Santé (330632101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    An Update on Nerve Biopsy

    Full text link

    Intra-axonal protein aggregation in the peripheral nervous system

    Full text link
    International audienceIntracellular protein aggregates are common pathological hallmarks of many neurodegenerative disorders, and a defect in axonal transport is also incriminated. Here, we studied intra-axonal abnormal protein aggregation and axonopathy by using immunohistochemistry and electron microscopy on peripheral nerve biopsies from 12 patients with chronic axonal peripheral neuropathy (PN) of unknown etiology. Among these patients, three had idiopathic Parkinson's disease (PD). Intra-axonal ubiquitin aggregates were more numerous in the patients with PD. Intra-axonal aggregates of tau AT8 were found in five patients without PD. Phosphorylated α-synuclein aggregation was absent in all cases, while intra-axonal colocalization of 14-3-3 β and ubiquitin was observed in two PD cases. Electron microscopy revealed enlarged axons crowded with organelles in six cases, including the three patients with PD, thus attesting a slowing of the axoplasmic flux. The number of ubiquitin aggregates was correlated with features of reduced axonal flux, while no such correlation was found for tau and 14-3-3 β. Age did not correlate with the number of tau, ubiquitin, and 14-3-3 aggregates. Thus, both ubiquitin and/or abnormal tau intra-axonal aggregates may be found in chronic axonal PN. Ubiquitin aggregates might reduce the axonal flux or result from a disease producing slowing of axonal transport

    Proteomic remodeling of proteasome in right heart failure.

    Full text link
    International audienceThe development of right heart failure (RHF) is characterized by alterations of right ventricle (RV) structure and function, but the mechanisms of RHF remain still unknown. Thus, understanding the RHF is essential for improved therapies. Therefore, identification by quantitative proteomics of targets specific to RHF may have therapeutic benefits to identify novel potential therapeutic targets. The objective of this study was to analyze the molecular mechanisms changing RV function in the diseased RHF and thus, to identify novel potential therapeutic targets. For this, we have performed differential proteomic analysis of whole RV proteins using two experimental rat models of RHF. Differential protein expression was observed for hundred twenty six RV proteins including proteins involved in structural constituent of cytoskeleton, motor activity, structural molecule activity, cytoskeleton protein binding and microtubule binding. Interestingly, further analysis of down-regulated proteins, reveals that both protein and gene expressions of proteasome subunits were drastically decreased in RHF, which was accompanied by an increase of ubiquitinated proteins. Interestingly, the proteasomal activities chymotrypsin and caspase-like were decreased whereas trypsin-like activity was maintained. In conclusion, this study revealed the involvement of ubiquitin-proteasome system (UPS) in RHF. Three deregulated mechanisms were discovered: (1) decreased gene and protein expressions of proteasome subunits, (2) decreased specific activity of proteasome; and (3) a specific accumulation of ubiquitinated proteins. This modulation of UPS of RV may provide a novel therapeutic avenue for restoration of cardiac function in the diseased RHF

    D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    Full text link
    International audienceAmong the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization

    Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study

    Full text link
    BACKGROUND: Mitochondrial functions are controlled by genes of both mitochondrial and nuclear DNA. Pathogenic variants affecting any of these are responsible for primary mitochondrial disorders (MIDs), which can be diagnosed during adulthood. Kidney functions are highly dependent on mitochondrial respiration. However, the prevalence of MID-associated nephropathies (MIDANs) is unknown in the adult population. We aimed to address this point and to provide a full characterization of MIDANs in this population.METHODS: We retrospectively included for observational study adults (≥16 years of age) with genetically diagnosed MID between 2000 and 2020 in our tertiary care academic centre when they had a chronic kidney disease (CKD) evaluation. MIDANs were ascertained by CKD occurring in MIDs. The phenotypic, biological, histopathological and genotypic characteristics were recorded from the medical chartsRESULTS: We included 80 MID-affected adults and ascertained MIDANs in 28/80 (35%). Kidney diseases under the care of a nephrologist occurred in only 14/28 (50%) of the adults with MIDAN. MIDANs were tubulointerstitial nephropathy in 14/28 patients (50%) and glomerular diseases in 9/28 (32.1%). In adults with MID, MIDAN was negatively associated with higher albumin levels {odds ratio [OR] 0.79 [95% confidence interval (CI) 0.67-0.95]} and vision abnormalities [OR 0.17 (95% CI 0.03-0.94)] and positively associated with hypertension [OR 4.23 (95% CI 1.04-17.17)]. CONCLUSION: MIDANs are frequent among adult MIDs. They are mostly represented by tubulointerstitial nephropathy or glomerular disease. Vision abnormalities, hypertension and albumin levels were independently associated with MIDANs. Our results pave the way for prospective studies investigating the prevalence of MIDANs among undetermined kidney disease populations

    L-DOPA Impairs Proteasome Activity in Parkinsonism through D1 Dopamine Receptor

    Full text link
    International audienceAberrant membrane localization of dopamine D(1) receptor (D1R) is associated with L-DOPA-induced dyskinesia (LID), a major complication of L-DOPA treatment in Parkinson's disease (PD). Since the proteasome plays a central role in modulating neuronal response through regulation of neurotransmitter receptor intraneuronal fate, we hypothesized that the ubiquitine-proteasome proteolytic pathway could be impaired in LID. Those LIDs are actually associated with a striatum-specific decrease in proteasome catalytic activity and accumulation of polyubiquitinated proteins in experimental rodent and monkey parkinsonism. We then demonstrated that such decreased proteasome catalytic activity (1) results from D1R activation and (2) feed-back the D1R abnormal trafficking, i.e., its exaggerated cell surface abundance. We further showed that the genetic invalidation of the E3 ubiquitin-protein ligase parkin PD gene leads to exaggerated abnormal involuntary movements compared with wild-type mice. We thus established in an unprecedented series of experimental models that impairment of the ubiquitine-proteasome system at specific nodes (E3 ligase parkin, polyubiquitination, proteasome catalytic activity) leads to the same phenomenon, i.e., aberrant behavioral response to dopamine replacement therapy in PD, highlighting the intimate interplay between dopamine receptor and proteasome activity in a nondegenerative context
    corecore