19 research outputs found

    Spaceflight: Immune Effects and Nutritional Countermeasure

    Get PDF
    Microgravity is predicted to be a significant challenge to immune system during space travel. Consequences of weakened immune responses range from increased disease susceptibility to neoplastic growth. Degree of immune dysfunction is considered proportional to duration of stay in spaceflights. As a result of these risks, there is major concern over potential health risk for space travels that ultimately result in serious and considerable loss of mission objectives. Therefore, here is a need to explore the immune effects of spaceflight and its countermeasures. Several attempts have been made to develop effective measure to alleviate or prevent immune dysfunction due to microgravity. Among them, immunonutritional model has been shown to effectively modulate and upregulate immune system. This is further supported by our experiments demonstrating that supplementation of nutritional substrates like nucleotide and mushroom extracts active hexose-correlated compound (AHCC) effective in maintaining or restoring immunity in microgravity analog models

    AHCC Activation and Selection of Human Lymphocytes via Genotypic and Phenotypic Changes to an Adherent Cell Type: A Possible Novel Mechanism of T Cell Activation

    Get PDF
    Active Hexose Correlated Compound (AHCC) is a fermented mushroom extract and immune supplement that has been used to treat a wide range of health conditions. It helps in augmentation of the natural immune response and affects immune cell activation and outcomes. The goal of this project was to study and understand the role and mechanisms of AHCC supplementation in the prevention of immunosuppression through T cell activation. The method described here involves “in vitro” culturing of lymphocytes, exposing them to different concentrations of AHCC (0 μg/mL, 50 μg/mL, 100 μg/mL, 250 μg/mL, and 500 μg/mL) at 0 hours. Interestingly, clumping and aggregation of the cells were seen between 24 and 72 hours of incubation. The cells lay down extracellular matrix, which become adherent, and phenotypical changes from small rounded lymphocytes to large macrophage-like, spindle shaped, elongated, fibroblast-like cells even beyond 360 hours were observed. These are probably translated from genotypic changes in the cells since the cells propagate for at least 3 to 6 generations (present observations). RNA isolated was subjected to gene array analysis. We hypothesize that cell adhesion is an activation and survival pathway in lymphocytes and this could be the mechanism of AHCC activation in human lymphocytes

    Bone Marrow Derived Mesenchymal Stem Cells Inhibit Inflammation and Preserve Vascular Endothelial Integrity in the Lungs after Hemorrhagic Shock

    Get PDF
    Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat “fixed volume” model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury

    Systeme renine-angiotensine du cerveau et hypertension arterielle

    No full text
    SIGLEINIST T 77407 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase

    No full text
    Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditions. Recently accumulated evidence strongly indicates that the regulation of sGC expression is a complex process modulated on several levels including transcription, post-transcriptional regulation, translation and protein stability. Presently our understanding of mechanisms governing regulation of sGC expression remains very limited and awaits systematic investigation. Among other ways, the expression of sGC subunits is modulated at the levels of mRNA abundance and transcript diversity. In this review we summarize available information on different mechanisms (including transcriptional activation, mRNA stability and alternative splicing) involved in the modulation of mRNA levels of sGC subunits in response to various environmental clues. We also summarize and cross-reference the information on human sGC splice forms available in the literature and in genomic databases. This review highlights the fact that the study of the biological role and regulation of sGC splicing will bring new insights to our understanding of NO/cGMP biology

    Neuroprotective Effects of Asparagus officinalis Stem Extract in Transgenic Mice Overexpressing Amyloid Precursor Protein

    Get PDF
    To mimic Alzheimer’s disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus
    corecore