80 research outputs found

    Aortic valve sclerosis in rabbits

    Get PDF
    BACKGROUND AND AIM OF THE STUDY: Aortic valve sclerosis is fairly common and is currently seen as a marker of systemic atherosclerosis. For unclear reasons only a minority of those sclerotic valves will evolve to become stenotic suggesting that atherogenic factors alone are insufficient to explain the development of valve stenosis. We had reported in a model of cholesterol fed rabbits that a combination of high cholesterol with vitamin D supplementation was necessary to induce valve stenosis and significant calcium deposition whereas high cholesterol alone only induced a sclerosis of the valve. In this study, we further evaluated the role of vitamin D treatment in the development of aortic valve disease (sclerosis or stenosis) in this rabbit model. METHODS: Rabbits were divided in 4 groups followed for 12 weeks: 1) no treatment; 2) cholesterol-enriched diet, 3) cholesterol-enriched diet + vitamin D2 (VD; 50000IU, daily) 4) VD alone for 12 weeks. Echocardiographic assessment of the aortic valve was done at baseline, and every 4 weeks thereafter. Aortic valve area, maximal and mean transvalvular gradients were recorded and compared over time. Immunohistological study of the valves of AS rabbits was also realized for several classical atherosclerosis markers. RESULTS: Vitamin D2 treated animal did not develop any stenosis of the valve despite increased echogenicity due to diffuse calcium deposits on the leaflets without any atherosclerotic lesions. Only the combination of high cholesterol with VD resulted in a decrease of aortic valve area. Immunohistological analysis of aortic valves from VD rabbits showed the presence of calcium deposits, T-cell infiltration in addition to positive labeling for alpha-smooth muscle cell actin. We did not observe macrophage infiltration in aortic valve leaflets of VD rabbits. CONCLUSION: Hypercholesterolemia or vitamin D supplements alone could not induce aortic valve stenosis in our animal model whereas the combination resulted in a decreased aortic valve area. These findings support the hypothesis that a combination of atherosclerotic and calcifying factors is necessary to induce aortic valve stenosis in this model

    Fenofibrate and left ventricle remodeling in volume overload

    Get PDF
    Aims : Fenofibrate is a peroxisome proliferator-associated receptor alpha agonist (PPARα) used clinically for the management of dyslipidemia and is a myocardial fatty acid oxidation stimulator. It has also been shown to have cardiac anti-hypertrophic properties but the effects of fenofibrate on the development of eccentric LVH and ventricular function in chronic left ventricular (LV) volume overload (VO) are unknown. This study was therefore designed to explore the effects of fenofibrate treatment in a VO rat model caused by severe aortic valve regurgitation (AR) with a focus on cardiac remodeling and myocardial metabolism. Main methods : Male Wistar rats were divided in four groups (13–15 animals/group): Shams (S) treated with fenofibrate (F; 100 mg/kg/d PO) or not (C) and severe AR receiving or not fenofibrate. Treatment was started one week before surgery and the animals were sacrificed 9 weeks later. Key findings : AR rats developed severe LVH (increased LV weight) during the course of the protocol. Fenofibrate did not reduce LV weight. However, eccentric LV remodeling was strongly reduced by fenofibrate in AR animals. Fractional shortening was significantly less affected in ARF compared to ARC group. Fenofibrate also increased the myocardial enzymatic activity of enzymes associated with fatty acid oxidation while inhibiting glycolytic enzyme phosphofructokinase. Significance : Fenofibrate decreased LV eccentric remodeling associated with severe VO and helped maintain systolic function. Studies with a longer follow-up will be needed to assess the long-term effects of fenofibrate in chronic volume overload caused by aortic regurgitation

    A Western high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice

    Get PDF
    Objectives : The purpose of this study was to compare aortic valve function and morphology in adult wild-type (WT) mice and in low-density lipoprotein receptor-deficient (LDLr−/−) mice fed or not fed a high-fat/high-carbohydrate (HF/HC) diet. Background : Observations suggest a link between degenerative aortic valve stenosis (AS) and atherosclerosis. Aortic valve stenosis has been successfully induced in animal models of extreme hypercholesterolemia, but these models are less relevant to humans. It is not known if a proatherogenic HF/HC diet without added cholesterol could have the same negative impacts. Methods : Forty C57BL/6J mice were divided into four groups: WT + normal diet, WT + HF/HC diet, LDLr−/− with a normal diet, and LDLr−/− with a HF/HC diet. Aortic valve function and histology were evaluated by echocardiography after four months. Results : Wild-type mice on a HF/HC diet became mildly hypercholesterolemic, obese, and hyperglycemic. As expected, LDLr−/− mice became severely hypercholesterolemic. Both WT and LDLr−/− mice on a HF/HC diet displayed smaller valve areas and higher transvalvular velocities (p < 0.01) after four months. Aortic valve leaflets were thicker and infiltrated with lipids and macrophages in both HF/HC groups. Conclusions : A HF/HC diet in mice results in significant aortic valve abnormalities. Putting WT mice on a HF/HC diet reproduced a combination of atherogenic factors (obesity, mild dyslipidemia, and hyperglycemia) more commonly encountered in humans than isolated severe hypercholesterolemia. Severe hypercholesterolemia was not a prerequisite in our model. This experimental model suggests that AS development is multifactorial and that hypercholesterolemia should not be the only target in this disease

    Early endothelial dysfunction in cholesterol-fed rabbits: a non-invasive in vivo ultrasound study.

    Get PDF
    BACKGROUND: Endothelial function in hypercholesterolemic rabbits is usually evaluated ex vivo on isolated aortic rings. In vivo evaluation requires invasive imaging procedures that cannot be repeated serially. AIM: We evaluated a non-invasive ultrasound technique to assess early endothelial function in rabbits and compare data with ex vivo measurements. METHODS: Twenty-four rabbits (fed with a cholesterol diet (0.5%) for 2 to 8 weeks) were given progressive infusions of acetylcholine (0.05–0.5 μg/kg/min) and their endothelial function was assessed in vivo by transcutaneous vascular ultrasound of the abdominal aorta. Ex vivo endothelial function was evaluated on isolated aortic rings and compared to in vivo data. RESULTS: Significant endothelial dysfunction was demonstrated in hypercholesterolemic animals as early as 2 weeks after beginning the cholesterol diet (aortic cross-sectional area variation: -2.9% vs. +4% for controls, p < 0.05). Unexpectedly, response to acetylcholine at 8 weeks was more variable. Endothelial function improved in 5 rabbits while 2 rabbits regained a normal endothelial function. These data corroborated well with ex vivo results. CONCLUSION: Endothelial function can be evaluated non-invasively in vivo by transcutaneous vascular ultrasound of the abdominal aorta in the rabbit and results correlate well with ex vivo data

    Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of 2 rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Get PDF
    Background : The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Methods : Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. Results : As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. Conclusions : HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility

    Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy.

    Get PDF
    Cardiac hypertrophy (CH) is an important and independent predictor of morbidity and mortality. Through expression profiling, we recently identified a subset of genes (Dhrs7c, Decr, Dhrs11, Dhrs4, Hsd11b1, Hsd17b10, Hsd17b8, Blvrb, Pecr), all of which are members of the short-chain dehydrogenase/reductase (SDR) superfamily and are highly expressed in the heart, which were significantly dysregulated in a rat model of CH caused by severe aortic valve regurgitation (AR). Here, we studied their expression in various models of CH, as well as factors influencing their regulation. Among the nine SDR genes studied, all but Hsd11b1 were downregulated in CH models (AR rats or mice infused with either isoproterenol or angiotensin II). This regulation showed a clear sex dimorphism, being more evident in males than in females irrespective of CH levels. In neonatal rat cardiomyocytes, we observed that treatment with the alpha-1 adrenergic receptor agonist, phenylephrine, mostly reproduced the observations made in CH animals models. Retinoic acid, on the other hand, stimulated the expression of most of the SDR genes studied, suggesting that their expression may be related to cardiomyocyte differentiation. Indeed, levels of expression were found to be higher in the hearts of adult animals than in neonatal cardiomyocytes. In conclusion, we identified a group of genes modulated in animal models of CH and mostly in males. This could be related to the activation of the fetal gene expression program in pathological CH situations, in which these highly expressed genes are down-regulated in the adult heart

    Interstitial cells from left-sided heart valves display more calcification potential than right-sided ones : an in vitro study of porcine valves

    Get PDF
    BACKGROUND AND AIM OF THE STUDY: The calcification of cardiac valves is more frequently observed on left-sided (aortic or mitral) than right-sided (pulmonic or tricuspid) valves. The cause of this preferential left-sided calcification remains relatively unknown. The study aim was to evaluate the capacity of interstitial cells isolated from the four cardiac valves of healthy adult pigs to calcify in culture. METHODS: Interstitial cells were isolated from the valve leaflets of three healthy young pigs and cultured in DMEM/fetal bovine serum (10%) in the presence or absence of osteogenic additives (ascorbic acid, dexamethasone, beta-glycerophosphate). RESULTS: The proliferation rate was similar for cells from each of the four valves. After longer periods of culture (> 10 days), cells from each valve spontaneously formed several calcification nodules, the process being accelerated in the presence of osteogenic additives (to 4-7 days). Alkaline phosphatase (AP) activity was highest in cells originating from the aortic and mitral valves, respectively, and least in those from the pulmonic and tricuspid valves. Culture with the osteogenic additives increased the AP activity by at least 50% for each valve, but the relative AP activity between cells from each valve origin tended to remain similar (aortic > mitral > pulmonic > tricuspid). Interestingly, the levels of matrix Gla-protein mRNA (an endogenous calcification inhibitor) followed an opposite trend of expression for each valve. CONCLUSION: Interstitial cells from porcine cardiac valves share similarities, although the capacity to calcify is more evident in cells from valves of the left side of the heart. Interstitial cells from the aortic valve displayed the greatest potential for calcification

    Chronic aortic regurgitation in rats

    Get PDF
    Objectives: Aortic regurgitation (AR) induces left ventricular (LV) eccentric hypertrophy in response to chronic volume overload. Patients suffering from this disease often remain asymptomatic for decades before progressive LV dysfunction develops silently. Because of this slow evolution, large clinical trials with long-term follow-up on subjects with chronic AR are hard to perform. To overcome this problem, animal models have been developed in the past but results were very heterogeneous. Methods: Helped by echocardiography, we refined a known technique to induce homogenous degrees of severe AR in Wistar-Kyoto rats. The effects on LV function without treatment and with nifedipine (25 mg/kg daily) (a drug currently recommended in humans with chronic AR) were evaluated by echocardiography. Results: Over 6 months, nontreated animals developed progressive LV dilatation and eccentric hypertrophy, characteristic of chronic LV volume overload. The animals also developed progressive LV systolic dysfunction, mimicking closely the evolution of the disease in humans. Abnormal filling parameters were also detected in the majority of animals. Systolic and diastolic abnormalities were prevented but only partially in the group treated with nifedipine. Conclusion: This model can be used to study chronic AR and LV dysfunction associated with the disease. Nifedipine seems to protect the LV against chronic volume overload but only partially. Treatment strategies currently used in humans deserve further investigation

    Gender differences in left ventricular remodeling in chronic severe aortic valve regurgitation in rats.

    Get PDF
    BACKGROUND AND AIM OF THE STUDY: Aortic valve regurgitation (AR) can result in heart failure from chronic overloading of the left ventricle. As little is known of gender-specific responses of the left ventricle to this condition, the study aim was to compare left ventricular (LV) remodeling in male and female rats with severe AR. In order to assess the impact of estrogens on LV remodeling in AR, the effect of ovariectomy (OVX) was also evaluated. METHODS: AR was created in adult Wistar rats (females (control or OVX) and males). Animals were followed for 26 weeks and compared to sham-operated groups. Heart function was evaluated in vivo using echocardiography, and the hearts were subsequently harvested for tissue analysis. RESULTS: The LV ejection fraction was decreased similarly in both sexes. Despite similar echocardiographic AR severity, females had higher indexed cardiac output and the largest increase in LV weight, cardiomyocyte hypertrophy and eccentric remodeling. No differences were observed between control and OVX females. Ovariectomy had no significant impact on any of the parameters monitored. CONCLUSION: Female rats developed more LV remodeling in response to chronic AR than males. AR appears to impose a greater LV workload on females due to their smaller body and heart size. Hormonal status did not have any impact on LV remodeling in this experimental model

    Fructose-fed rats and eccentric LVH

    Get PDF
    The development of left ventricular (LV) hypertrophy (LVH) can be affected by diet manipulation. Concentric LVH resulting from pressure overload can be worsened by feeding rats with a high-fructose diet. Eccentric LVH is a different type of hypertrophy and is associated with volume overload (VO) diseases. The impact of an abnormal diet on the development of eccentric LVH and on ventricular function in chronic VO is unknown. This study therefore examined the effects of a fructose-rich diet on LV eccentric hypertrophy, ventricular function, and myocardial metabolic enzymes in rats with chronic VO caused by severe aortic valve regurgitation (AR). Wistar rats were divided in four groups: sham-operated on control diet (SC; n = 13) or fructose-rich diet (SF; n = 13) and severe aortic regurgitation fed with the same diets [aortic regurgitation on control diet (ARC), n = 16, and aortic regurgitation on fructose-rich diet (ARF), n = 13]. Fructose-rich diet was started 1 wk before surgery, and the animals were euthanized 9 wk later. SF and ARF had high circulating triglycerides. ARC and ARF developed significant LV eccentric hypertrophy after 8 wk as expected. However, ARF developed more LVH than ARC. LV ejection fraction was slightly lower in the ARF compared with ARC. The increased LVH and decreased ejection fraction could not be explained by differences in hemodynamic load. SF, ARC, and ARF had lower phosphorylation levels of the AMP kinase compared with SC. A fructose-rich diet worsened LV eccentric hypertrophy and decreased LV function in a model of chronic VO caused by AR in rats. Normal animals fed the same diet did not develop these abnormalities. Hypertriglyceridemia may play a central role in this phenomenon as well as AMP kinase activity
    • …
    corecore