5 research outputs found

    Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function.</p> <p>Methods</p> <p>Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [<sup>3</sup>H]cholesterol to apolipoprotein (apo) A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, <it>Gapdh</it>, and combined with studies of this molecule on cholesterol esterification, <it>de novo</it> lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett’s or Bonferroni post <it>t</it>-tests, as appropriate.</p> <p>Results</p> <p>The positive control, resveratrol (24 h), significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; <it>p</it><0.01) and oligomycin (55%; <it>p</it><0.01), under conditions (10 μM, 3 h) which did not induce cellular toxicity or deplete total cellular ATP content. Levels of ATP binding cassette transporter A1 (ABCA1) protein were repressed by oligomycin under optimal efflux conditions, despite paradoxical increases in <it>Abca1</it> mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (<it>Abca1</it>, <it>Abcg4</it>, <it>Stard1</it>) and cholesterol biosynthesis (<it>Hmgr</it>, <it>Mvk</it>, <it>Scap</it>, <it>Srebf2</it>), indicating profound dysregulation of cholesterol homeostasis.</p> <p>Conclusions</p> <p>Acute loss of mitochondrial function, and in particular Δψ<sub>m</sub>, reduces cholesterol efflux to apoA-I and dysregulates macrophage cholesterol homeostasis mechanisms. Bioavailable antioxidants, targeted to mitochondria and capable of sustaining effective mitochondrial function, may therefore prove effective in maintenance of arterial health.</p

    RNA-based Prognostic Markers in Chronic Lymphocytic Leukemia

    Full text link
    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease where a significant proportion of patients will develop an aggressive disease. Today, the mutational status of the immunoglobulin heavy variable (IGHV) genes is one of the strongest prognostic markers in CLL, where unmutated IGHV genes correlate with poor outcome. In addition, IGHV3-21 gene usage is associated with poor prognosis independent of mutational status. Recently, several genes were shown to be differently expressed between IGHV mutated and unmutated CLL and were suggested as prognostic markers. The aim of this thesis was to examine the applicability of these RNA-based prognostic markers in CLL. In papers I and II, the prognostic significance of LPL and TCL1A mRNA expression in CLL was investigated in 140 and 144 patients, respectively. High expression was found to be associated with inferior clinical outcome for both markers. However, CLL cases with mutated IGHV3-21 genes displayed low levels of LPL expression, indicating that LPL cannot identify this poor-risk patient group. In contrast, high TCL1A expression was detected in all IGHV3-21 cases. To elucidate the functionality of LPL in CLL, LPL lipase activity was measured in 33 cases. The lipase activity was found to be invariably low, implying an alternative function for LPL in CLL. In paper III, a comprehensive analysis of five RNA-based markers (LPL, TCL1A, ZAP70, CLLU1 and MCL1) was performed in 252 CLL patients. All RNA-based markers except MCL1 predicted clinical outcome, with LPL being the strongest. Moreover, LPL expression independently predicted overall survival when adjusted for established markers. All of the RNA-based markers added additional prognostic information to established markers, e.g. high LPL expression predicted an inferior outcome in patients with mutated IGHV genes or good-risk cytogenetics. For clinical application, over time stability of prognostic markers is crucial. In paper IV, the expression of LPL, TCL1A, ZAP70 and MCL1 was investigated in samples taken at diagnosis and at a follow-up of seven years in 104 CLL patients. LPL was found to be the most stable marker, displaying high correlation between the sequential samples, whereas ZAP70 and MCL1 varied significantly. TCL1A expression increased at follow-up, which may indicate disease progression as TCL1A promotes cell survival. In summary, this thesis highlights the applicability of RNA-based markers in CLL prognostication, both as single markers or in combination with established markers. In particular, LPL was shown to be the strongest RNA-based marker in terms of prognostic strength and stability

    LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic lymphocytic leukemia

    Full text link
    Background The expression levels of LPL, ZAP70, TCL1A, CLLU1 and MCL1 have recently been proposed as prognostic factors in chronic lymphocytic leukemia. However, few studies have systematically compared these different RNA-based markers. Design and Methods Using real-time quantitative PCR, we measured the mRNA expression levels of these genes in unsorted samples from 252 newly diagnosed chronic lymphocytic leukemia patients and correlated our data with established prognostic markers (for example Binet stage, CD38, IGHV gene mutational status and genomic aberrations) and clinical outcome. Results High expression levels of all RNA-based markers, except MCL1, predicted shorter overall survival and time to treatment, with LPL being the most significant. In multivariate analysis including the RNA-based markers, LPL expression was the only independent prognostic marker for overall survival and time to treatment. When studying LPL expression and the established markers, LPL expression retained its independent prognostic strength for overall survival. All of the RNA-based markers, albeit with varying ability, added prognostic information to established markers, with LPL expression giving the most significant results. Notably, high LPL expression predicted a worse outcome in good-prognosis subgroups, such as patients with mutated IGHV genes, Binet stage A, CD38 negativity or favorable cytogenetics. In particular, the combination of LPL expression and CD38 could further stratify Binet stage A patients. Conclusions LPL expression is the strongest RNA-based prognostic marker in chronic lymphocytic leukemia that could potentially be applied to predict outcome in the clinical setting, particularly in the large group of patients with favorable prognosis
    corecore