13 research outputs found

    Signal-induced ubiquitination of p57Kip2 is independent of the C-terminal consensus Cdk phosphorylation site

    Get PDF
    AbstractThe cyclin-dependent kinase inhibitor p57Kip2 is required for normal mouse embryonic development. p57Kip2 consists of four structurally distinct domains in which the conserved C-terminal nuclear targeting domain contains a putative Cdk phosphorylation site (Thr342) that shares a great similitude in the adjacent sequences with p27Kip1 but not with p21Cip1. Phosphorylation on Thr187 has been shown to promote degradation of p27Kip1. Although there is sequence homology between the C-terminal part of p27Kip1 and p57Kip2, we show that the ubiquitination and degradation of p57Kip2 are independent of Thr342. In contrast a destabilizing element located in the N-terminal is implicated in p57Kip2 destabilization

    The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse

    Get PDF
    The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size

    Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo

    Get PDF
    Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed

    Identification of essential sequences for cellular localization in the muscle-specific ubiquitin E3 ligase MAFbx/Atrogin 1

    No full text
    Contact: [email protected] audienceIn skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy

    MAFbx/Atrogin-1 Controls the Activity of the Initiation Factor eIF3-f in Skeletal Muscle Atrophy by Targeting Multiple C-terminal Lysines

    No full text
    We recently presented evidence that the subunit eIF3-f of the eukaryotic initiation translation factor eIF3 that interacts with the E3-ligase Atrogin-1/muscle atrophy F-box (MAFbx) for polyubiquitination and proteasome-mediated degradation is a key target that accounts for MAFbx function during muscle atrophy. To understand this process, deletion analysis was used to identify the region of eIF3-f that is required for its proteolysis. Here, we report that the highly conserved C-terminal domain of eIF3-f is implicated for MAFbx-directed polyubiquitination and proteasomal degradation. Site-directed mutagenesis of eIF3-f revealed that the six lysine residues within this domain are required for full polyubiquitination and degradation by the proteasome. In addition, mutation of these six lysines (mutant K5–10R) displayed hypertrophic activity in cellulo and in vivo and was able to protect against starvation-induced muscle atrophy. Taken together, our data demonstrate that the C-terminal modifications, believed to be critical for proper eIF3-f regulation, are essential and contribute to a fine-tuning mechanism that plays an important role for eIF3-f function in skeletal muscl

    MyoD undergoes a distinct G2/M-specific regulation in muscle cells.

    No full text
    Noyaux et cycle cellulaire (resp. Danièle Hernandez-Verdun)International audienceThe transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells

    eIF3f: A central regulator of the antagonism atrophy/hypertrophy in skeletal muscle

    No full text
    The eukaryotic initiation factor 3 subunit f (eIF3f) is one of the 13 subunits of the translation initiation factor complex eIF3 required for several steps in the initiation of mRNA translation. In skeletal muscle, recent studies have demonstrated that eIF3f plays a central role in skeletal muscle size maintenance. Accordingly, eIF3f overexpression results in hypertrophy through modulation of protein synthesis via the mTORC1 pathway. Importantly, eIF3f Was described as a target of the E3 ubiquitin ligase MAFbx/atrogin-1 for proteasome-mediated breakdown under atrophic conditions. The biological importance of the MAFbx/atrogin-1-dependent targeting of eFI3f is highlighted by the finding that expression of ad eIF3f mutant insensitive to MAFbx/atrogin-1 polyubiquitination is associated with enhanced protection against starvation-induced muscle atrophy. A better understanding of the precise role of this subunit should lead to the development of new therapeutic approaches to prevent or limit muscle wasting that prevails in numerous physiological and pathological states such as immobilization, aging, denervated conditions, neuromuscular diseases, AIDS, cancer, diabetes. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. (C) 2013 Elsevier Ltd. All rights reserved
    corecore