2 research outputs found

    Monitoring of erlotinib in pancreatic cancer patients during long-time administration and comparison to a physiologically based pharmacokinetic model

    No full text
    Purpose: In this study, a therapeutic drug monitoring (TDM) of erlotinib in pancreatic cancer patients was performed over 50 weeks to reveal possible alterations in erlotinib plasma concentrations. Additionally, a physiologically based pharmacokinetic (PBPK) model was created to assess such variations in silico. Methods: Patients with advanced pancreatic cancer received a chemotherapeutic combination of 100 mg erlotinib q.d., 500–900 mg capecitabine b.d. and 5 mg/kg bevacizumab q.2wks. Samples were analyzed by HPLC and the results were compared to a PBPK model, built with the software GastroPlus™ and based on calculated and literature data. Results: The erlotinib plasma concentrations did not show any accumulation, but displayed a high inter-patient variability over the whole investigated period. Trough plasma concentrations ranged from 0.04 to 1.22 µg/ml after day 1 and from 0.01 to 2.4 µg/ml in the long-term assessment. 7% of the patients showed concentrations below the necessary activity threshold of 0.5 µg/ml during the first week. The impact of some co-variates on the pharmacokinetic parameters Cmax and AUC0–24 were shown in a PBPK model, including food effects, changes in body weight, protein binding or liver function and the concomitant intake of gastric acid reducing agents (ARAs). Conclusion: This study presents the approach of combining TDM and PBPK modeling for erlotinib, a drug with a high interaction potential. TDM is an important method to monitor drugs with increased inter-patient variability, additionally, the PBPK model contributed valuable insights to the interaction mechanisms involved, resulting in an effective combination from a PK perspective to ensure a safe treatment.© The Author(s) 201
    corecore