3 research outputs found

    Readout and Control: Scalable Techniques for Quantum Information Processing

    No full text
    Quantum mechanics allows for the processing of information in entirely new ways, surpassing the computational limits set by classical physics. Termed `quantum information processing', scaling this scheme relies on simultaneously increasing the number of qubits -- the fundamental unit of quantum computation -- whilst reducing their error rates. With this comes a variety of challenges, including the ability to readout the quantum state of large numbers of qubits, as well as to control their evolution in order to mitigate errors. This thesis aims to address these challenges by developing techniques for the readout and control of quantum systems. The first series of experiments focuses on the readout of GaAs/AlGaAs semiconductor quantum systems, primarily relating to the technique of dispersive gate sensing (DGS). DGS is used to probe electron transmission in an open system, a quantum point contact, demonstrating an ability to resolve characteristic features of a one-dimensional ballistic channel in the limit where transport is not possible. DGS is also used to observe anomalous signals in the potential landscape of quantum-dot defining gate electrodes. A technique for time domain multiplexing is also presented, which allows for readout resources, in the form of microwave components, to be shared between multiple qubits, increasing the capacity of a single readout line. The second series of experiments validates control techniques using trapped 171Yb+ ions. Classical error models are engineered using high-bandwidth IQ modulation of the microwave source used to drive qubit rotations. Reductions in the coherent lifetime of the quantum system are shown to match well with quantitative models. This segues in to developing techniques to understand and suppress noise in the system. This is achieved using the filter-transfer function approach, which casts arbitrary quantum control operations on qubits as noise spectral filters
    corecore