17 research outputs found
Dexamethasone-Associated Cross-Linked Actin Network Formation in Human Trabecular Meshwork Cells Involves β3 Integrin Signaling
This study demonstrates that dexamethasone activates an αvβ3 integrin signaling pathway in trabecular meshwork cells that has previously been shown to regulate cross-linked actin network (CLAN) formation. CLANs may contribute to the pathogenesis of steroid-induced glaucoma
CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide
Intracellular
signaling pathways are mediated by changes in protein
abundance and post-translational modifications. A common approach
for investigating signaling mechanisms and the effects induced by
synthetic compounds is through overexpression of recombinant reporter
genes. Genome editing with CRISPR/Cas9 offers a means to better preserve
native biology by appending reporters directly onto the endogenous
genes. An optimal reporter for this purpose would be small to negligibly
influence intracellular processes, be readily linked to the endogenous
genes with minimal experimental effort, and be sensitive enough to
detect low expressing proteins. HiBiT is a 1.3 kDa peptide (11 amino
acids) capable of producing bright and quantitative luminescence through
high affinity complementation (<i>K</i><sub>D</sub> = 700
pM) with an 18 kDa subunit derived from NanoLuc (LgBiT). Using CRISPR/Cas9,
we demonstrate that HiBiT can be rapidly and efficiently integrated
into the genome to serve as a reporter tag for endogenous proteins.
Without requiring clonal isolation of the edited cells, we were able
to quantify changes in abundance of the hypoxia inducible factor 1A
(HIF1α) and several of its downstream transcriptional targets
in response to various stimuli. In combination with fluorescent antibodies,
we further used HiBiT to directly correlate HIF1α levels with
the hydroxyproline modification that mediates its degradation. These
results demonstrate the ability to efficiently tag endogenous proteins
with a small luminescent peptide, allowing sensitive quantitation
of the response dynamics in their regulated expression and covalent
modifications
NanoBRETA Novel BRET Platform for the Analysis of Protein–Protein Interactions
Dynamic
interactions between proteins comprise a key mechanism
for temporal control of cellular function and thus hold promise for
development of novel drug therapies. It remains technically challenging,
however, to quantitatively characterize these interactions within
the biologically relevant context of living cells. Although, bioluminescence
resonance energy transfer (BRET) has often been used for this purpose,
its general applicability has been hindered by limited sensitivity
and dynamic range. We have addressed this by combining an extremely
bright luciferase (Nanoluc) with a means for tagging intracellular
proteins with a long-wavelength fluorophore (HaloTag). The small size
(19 kDa), high emission intensity, and relatively narrow spectrum
(460 nm peak intensity) make Nanoluc luciferase well suited as an
energy donor. By selecting an efficient red-emitting fluorophore (635
nm peak intensity) for attachment onto the HaloTag, an overall spectral
separation exceeding 175 nm was achieved. This combination of greater
light intensity with improved spectral resolution results in substantially
increased detection sensitivity and dynamic range over current BRET
technologies. Enhanced performance is demonstrated using several established
model systems, as well as the ability to image BRET in individual
cells. The capabilities are further exhibited in a novel assay developed
for analyzing the interactions of bromodomain proteins with chromatin
in living cells
CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide
Intracellular
signaling pathways are mediated by changes in protein
abundance and post-translational modifications. A common approach
for investigating signaling mechanisms and the effects induced by
synthetic compounds is through overexpression of recombinant reporter
genes. Genome editing with CRISPR/Cas9 offers a means to better preserve
native biology by appending reporters directly onto the endogenous
genes. An optimal reporter for this purpose would be small to negligibly
influence intracellular processes, be readily linked to the endogenous
genes with minimal experimental effort, and be sensitive enough to
detect low expressing proteins. HiBiT is a 1.3 kDa peptide (11 amino
acids) capable of producing bright and quantitative luminescence through
high affinity complementation (<i>K</i><sub>D</sub> = 700
pM) with an 18 kDa subunit derived from NanoLuc (LgBiT). Using CRISPR/Cas9,
we demonstrate that HiBiT can be rapidly and efficiently integrated
into the genome to serve as a reporter tag for endogenous proteins.
Without requiring clonal isolation of the edited cells, we were able
to quantify changes in abundance of the hypoxia inducible factor 1A
(HIF1α) and several of its downstream transcriptional targets
in response to various stimuli. In combination with fluorescent antibodies,
we further used HiBiT to directly correlate HIF1α levels with
the hydroxyproline modification that mediates its degradation. These
results demonstrate the ability to efficiently tag endogenous proteins
with a small luminescent peptide, allowing sensitive quantitation
of the response dynamics in their regulated expression and covalent
modifications
TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS.
TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.JOURNAL ARTICLEFLWOASCOPUS: re.jinfo:eu-repo/semantics/publishe
Improved Deconvolution of Protein Targets for Bioactive Compounds Using a Palladium Cleavable Chloroalkane Capture Tag
The
benefits provided by phenotypic screening of compound libraries
are often countered by difficulties in identifying the underlying
cellular targets. We recently described a new approach utilizing a
chloroalkane capture tag, which can be chemically attached to bioactive
compounds to facilitate the isolation of their respective targets
for subsequent identification by mass spectrometry. The tag minimally
affects compound potency and membrane permeability, enabling target
engagement inside cells. Effective enrichment of these targets is
achieved through selectivity in both their rapid capture onto immobilized
HaloTag and their subsequent release by competitive elution. Here,
we describe a significant improvement to this method where selective
elution was achieved through palladium-catalyzed cleavage of an allyl-carbamate
linkage incorporated into the chloroalkane capture tag. Selective
tag cleavage provided robust release of captured targets exhibiting
different modes of binding to the bioactive compound, including prolonged
residence time and covalent interactions. Using the kinase inhibitors
ibrutinib and BIRB796 as model compounds, we demonstrated the capability
of this new method to identify both expected targets and “off-targets”
exhibiting a range of binding affinities, cellular abundances, and
binding characteristics
NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells
Protein-fragment
complementation assays (PCAs) are widely used
for investigating protein interactions. However, the fragments used
are structurally compromised and have not been optimized nor thoroughly
characterized for accurately assessing these interactions. We took
advantage of the small size and bright luminescence of NanoLuc to
engineer a new complementation reporter (NanoBiT). By design, the
NanoBiT subunits (i.e., 1.3 kDa peptide, 18 kDa polypeptide) weakly
associate so that their assembly into a luminescent complex is dictated
by the interaction characteristics of the target proteins onto which
they are appended. To ascertain their general suitability for measuring
interaction affinities and kinetics, we determined that their intrinsic
affinity (<i>K</i><sub>D</sub> = 190 μM) and association
constants (<i>k</i><sub>on</sub> = 500 M<sup>–1</sup> s<sup>–1</sup>, <i>k</i><sub>off</sub> = 0.2 s<sup>–1</sup>) are outside of the ranges typical for protein interactions.
The accuracy of NanoBiT was verified under defined biochemical conditions
using the previously characterized interaction between SME-1 β-lactamase
and a set of inhibitor binding proteins. In cells, NanoBiT fusions
to FRB/FKBP produced luminescence consistent with the linear characteristics
of NanoLuc. Response dynamics, evaluated using both protein kinase
A and β-arrestin-2, were rapid, reversible, and robust to temperature
(21–37 °C). Finally, NanoBiT provided a means to measure
pharmacology of kinase inhibitors known to induce the interaction
between BRAF and CRAF. Our results demonstrate that the intrinsic
properties of NanoBiT allow accurate representation of protein interactions
and that the reporter responds reliably and dynamically in cells
Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing
Abstract Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (Polϴ). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing