3 research outputs found

    Cardiovascular Disease Prediction from Electrocardiogram by Using Machine Learning

    No full text
    Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population

    10-Year Cardiovascular Disease Risk Estimation Based on Lipid Profile-Based and BMI-Based Framingham Risk Scores across Multiple Sociodemographic Characteristics: The Malaysian Cohort Project

    No full text
    Cardiovascular disease (CVD) leads to high morbidity and mortality rate worldwide. Therefore, it is important to determine the risk of CVD across the sociodemographic factors to strategize preventive measures. The current study consisted of 53,122 adults between the ages of 35 and 65 years from The Malaysian Cohort project during recruitment phase from year 2006 to year 2012. Sociodemographic profile and physical activity level were assessed via self-reported questionnaire, whereas relevant CVD-related biomarkers and biophysical variables were measured to determine the Framingham Risk Score (FRS). The main outcome was the 10-year risk of CVD via FRS calculated based on lipid profile and body mass index (BMI) associated formulae. The BMI-based formula yielded a higher estimation of 10-year CVD risk than the lipid profile-based formula in the study for both males (median = 13.2% and 12.7%, respectively) and females (median = 4.3% and 4.2%, respectively). The subgroup with the highest risk for 10-year CVD events (based on both FRS formulae) was the Malay males who have lower education level and low physical activity level. Future strategies for the reduction of CVD risk should focus on screening via BMI-based FRS in this at-risk subpopulation to increase the cost-effectiveness of the prevention initiatives
    corecore