24 research outputs found
Elevated Hippocampal Cholinergic Neurostimulating Peptide precursor protein (HCNP-pp) mRNA in the amygdala in major depression
The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N=16 pairs; males: N=12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N=6 pairs; males: N=6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p<0.0001), but not males, and of UCMS-exposed mice (males and females; p=0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p=0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p<0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD.Fil: Bassi, Sabrina Cecilia. University of Pittsburgh; Estados Unidos. Hospital Italiano. Instituto de Ciencias Básicas y Medicina Experimental; ArgentinaFil: Seney, Marianne L.. University of Pittsburgh; Estados UnidosFil: Argibay, Pablo. Hospital Italiano. Instituto de Ciencias Básicas y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Sibille, Etienne. University of Pittsburgh; Estados Unidos. University of Toronto; Canad
Sex-Dependent Anti-Stress Effect of an alpha 5 Subunit Containing GABA(A) Receptor Positive Allosteric Modulator
Rationale: Current first-line treatments for stress related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted "alpha 5-PAM"), a positive allosteric modulator selective for (alpha 5-subunit containing GABA(A) receptors found predominantly on cortical pyramidal cell dendrites, has anti stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with alpha 5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic alpha 5-PAM treatments produce a pattern of decreased stress induced behaviors (denoted as "behavioral emotionality") across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic alpha 5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to alpha 5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with alpha 5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of alpha 5 subunit containing GABA(A) receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities
Social Structure Predicts Genital Morphology in African Mole-Rats
BACKGROUND:African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure. METHODOLOGY/PRINCIPAL FINDINGS:We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate. CONCLUSIONS/SIGNIFICANCE:The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology
Sex differences in mood disorders: perspectives from humans and rodent models
Abstract
Mood disorders are devastating, often chronic illnesses characterized by low mood, poor affect, and anhedonia. Notably, mood disorders are approximately twice as prevalent in women compared to men. If sex differences in mood are due to underlying biological sex differences, a better understanding of the biology is warranted to develop better treatment or even prevention of these debilitating disorders. In this review, our goals are to: 1) summarize the literature related to mood disorders with respect to sex differences in prevalence, 2) introduce the corticolimbic brain network of mood regulation, 3) discuss strategies and challenges of modeling mood disorders in mice, 4) discuss mechanisms underlying sex differences and how these can be tested in mice, and 5) discuss how our group and others have used a translational approach to investigate mechanisms underlying sex differences in mood disorders in humans and mice
Sex-Specific Effects of Stress on Mood-Related Gene Expression.
Women are twice as likely as men to be diagnosed with major depressive disorder (MDD). Recent studies report distinct molecular changes in depressed men and women across mesocorticolimbic brain regions. However, it is unclear which sex-related factors drive distinct MDD-associated pathology. The goal of this study was to use mouse experimental systems to investigate sex-specific mechanisms underlying the distinct molecular profiles of MDD in men and women. We used unpredictable chronic mild stress to induce an elevated anxiety-/depressive-like state and four core genotypes (FCG) mice to probe for sex-specific mechanisms. As predicted, based on previous implications in mood, stress impacted the expression of several dopamine-, GABA-, and glutamate-related genes. Some of these effects, specifically in the prefrontal cortex, were genetic sex-specific, with effects in XX mice but not in XY mice. Stress also impacted gene expression differently across the mesocorticolimbic circuit, with increased expression of mood-related genes in the prefrontal cortex and nucleus accumbens, but decreased expression in basolateral amygdala. Our results suggest that females are sensitive to the effects of chronic stress, partly due to their genetic sex, independent of gonadal hormones. Furthermore, these results point to the prefrontal cortex as the node in the mesocorticolimbic circuitry with the strongest female-specific effects
Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia
Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes
Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia.
Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes
External genitalia in three African mole-rat species.
<p>Naked mole rat male (A) and female (B); Damaraland mole-rat male (C) and female (D); Silvery mole-rat male (E) female (F). Brackets indicate anogenital distance. Asterisk in B indicates site of the imperforate vagina. Abbreviations: A, anus; AM, anal mound; GM, genital mound; Ph, phallus. Scale bars: 3 mm for A–D; 2 mm for E and F.</p
Comparison of penile structures in naked, Damaraland, and silvery mole-rats.
<p>(A–C) Photomicrographs depicting the structure of the corpora cavernosa and corpus spongiosum in the naked mole-rat, Damaraland mole-rat, and silvery mole-rat, respectively. The urethral muscle is seen at this level in the naked mole-rat (A); this muscle does not extend as far distally in the other two species. (D–E) The bulb of the penis is shown in Damaraland (D) and silvery mole-rats (E), in relation to neighboring structures. (F) Higher power view of the section in (D), showing LA fibers attaching to the bulb of the penis (asterisk) and to the corpus cavernosum. (G) Higher power view of the section in (E), showing LA fibers attaching solely to the bulb of penis (asterisk). Abbreviations: BP, bulb of penis; CC, corpora cavernosa; CS, corpus spongiosum; IC, ischiocavernosus; LA, levator ani; R, rectum; U, urethra. Scale bars in A–C, F, G = 500 µm; D, E = 1 mm.</p