357 research outputs found
N-cadherin acts in concert with Slit1-Robo2 signaling in regulating aggregation of placode-derived cranial sensory neurons
Vertebrate cranial sensory ganglia have a dual origin from the neural crest and ectodermal placodes. In the largest of these, the trigeminal ganglion, Slit1-Robo2 signaling is essential for proper ganglion assembly. Here, we demonstrate a crucial role for the cell adhesion molecule N-cadherin and its interaction with Slit1-Robo2 during gangliogenesis in vivo. A common feature of chick trigeminal and epibranchial ganglia is the expression of N-cadherin and Robo2 on placodal neurons and Slit1 on neural crest cells. Interestingly, N-cadherin localizes to intercellular adherens junctions between placodal neurons during ganglion assembly. Depletion of N-cadherin causes loss of proper ganglion coalescence, similar to that observed after loss of Robo2, suggesting that the two pathways might intersect. Consistent with this possibility, blocking or augmenting Slit-Robo signaling modulates N-cadherin protein expression on the placodal cell surface concomitant with alteration in placodal adhesion. Lack of an apparent change in total N-cadherin mRNA or protein levels suggests post-translational regulation. Co-expression of N-cadherin with dominant-negative Robo abrogates the Robo2 loss-of-function phenotype of dispersed ganglia, whereas loss of N-cadherin reverses the aberrant aggregation induced by increased Slit-Robo expression. Our study suggests a novel mechanism whereby N-cadherin acts in concert with Slit-Robo signaling in mediating the placodal cell adhesion required for proper gangliogenesis
Migrating neural crest cells in the trunk of the avian embryo are multipotent
Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative. Thus, restriction of neural crest cell fate must occur relatively late in migration or at the final sites of neural crest cell localization
Development and evolution of the neural crest: An overview
The neural crest is a multipotent and migratory cell type that forms transiently in the developing vertebrate embryo. These cells emerge from the central nervous system, migrate extensively and give rise to diverse cell lineages including melanocytes, craniofacial cartilage and bone, peripheral and enteric neurons and glia, and smooth muscle. A vertebrate innovation, the gene regulatory network underlying neural crest formation appears to be highly conserved, even to the base of vertebrates. Here, we present an overview of important concepts in the neural crest field dating from its discovery 150 years ago to open questions that will motivate future research
Cell lineage analysis of the avian neural crest
Neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. A major unanswered question concerning the neural crest is when and how the neural crest cells become determined to adopt a particular fate. We have explored the developmental potential of trunk neural crest cells in avian embryos by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells within the dorsal neural tube. We find that premigratory and emigrating neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. These results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after emigration from the neural tube either during their migration or at their sites of localization. To determine whether neural crest cells become restricted during their migration, we have microinjected individual trunk neural crest cells with dye shortly after they leave the neural tube or as they migrate through the somite. We find that a majority of the clones derived from migrating neural crest cells appear to be multipotent; individual migrating neural crest cells gave rise to both sensory and sympathetic neurons, as well as cells with the morphological characteristics of Schwann cells, and other nonneuronal cells. Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. These data demonstrate that migrating trunk neural crest cells, like their premigratory progenitors, can be multipotent. They give rise to cells in multiple neural crest derivatives and contribute to both neuronal and non-neuronal elements within a given derivative. Thus, restriction of neural crest cell fate must occur relatively late in migration or at the final destinations
Dynamic alterations in gene expression after Wnt-mediated induction of avian neural crest
The Wnt signaling pathway is important in the formation of neural crest cells in many vertebrates, but the downstream targets of neural crest induction by Wnt are largely unknown. Here, we examined quantitative changes in gene expression regulated by Wnt-mediated neural crest induction using quantitative PCR (QPCR). Induction was recapitulated in vitro by adding soluble Wnt to intermediate neural plate tissue cultured in collagen, and induced versus control tissue were assayed using gene-specific primers at times corresponding to premigratory (18 and 24 h) or early (36 h) stages of crest migration. The results show that Wnt signaling up-regulates in a distinct temporal pattern the expression of several genes normally expressed in the dorsal neural tube (slug, Pax3, Msx1, FoxD3, cadherin 6B) at "premigratory" stages. While slug is maintained in early migrating crest cells, Pax3, FoxD3, Msx1 and cadherin 6B all are down-regulated by the start of migration. These results differ from the temporal profile of these genes in response to the addition of recombinant BMP4, where gene expression seems to be maintained. Interestingly, expression of rhoB is unchanged or even decreased in response to Wnt-mediated induction at all times examined, though it is up-regulated by BMP signals. The temporal QPCR profiles in our culture paradigm approximate in vivo expression patterns of these genes before neural crest migration, and are consistent with Wnt being an initial neural crest inducer with additional signals like BMP and other factors maintaining expression of these genes in vivo. Our results are the first to quantitatively describe changes in gene expression in response to a Wnt or BMP signal during transformation of a neural tube cell into a migratory neural crest cell
Migrating into Genomics with the Neural Crest
Neural crest cells are a fascinating embryonic cell type, unique to vertebrates, which arise within the central nervous system but
emigrate soon after its formation and migrate to numerous and sometimes distant locations in the periphery. Following their
migratory phase, they differentiate into diverse derivatives ranging from peripheral neurons and glia to skin melanocytes and
craniofacial cartilage and bone.The molecular underpinnings underlying initial induction of prospective neural crest cells at the
neural plate border to their migration and differentiation have been modeled in the form of a putative gene regulatory network.
This review describes experiments performed in my laboratory in the past few years aimed to test and elaborate this gene regulatory
network from both an embryonic and evolutionary perspective. The rapid advances in genomic technology in the last decade have
greatly expanded our knowledge of important transcriptional inputs and epigenetic influences on neural crest development. The
results reveal new players and new connections in the neural crest gene regulatory network and suggest that it has an ancient origin
at the base of the vertebrate tree
How inhibitory cues can both constrain and promote cell migration
Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, SzabĆ³ et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration
Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration
Although the Xenopus embryo has served as an important model system for both molecular and cellular studies of vertebrate development, comparatively little is known about its neural crest. Here, we take advantage of the ease of manipulation and relative transparency of Xenopus laevis embryos to follow neural crest cell migration and differentiation in living embryos. We use two techniques to study the lineage and migratory patterns of frog neural crest cells: (1) injections of DiI or lysinated rhodamine dextran (LRD) into small populations of neural crest cells to follow movement and (2) injections of LRD into single cells to follow cell lineage. By using non-invasive approaches that allow observations in living embryos and control of the time and position of labelling, we have been able to expand upon the results of previous grafting experiments. Migration and differentiation of the labelled cells were observed over time in individual living embryos, and later in sections to determine precise position and morphology. Derivatives populated by the neural crest are the fins, pigment stripes, spinal ganglia, adrenal medulla, pronephric duct, enteric nuclei and the posterior portion of the dorsal aorta. In the rostral to mid-trunk levels, most neural crest cells migrate along two paths: a dorsal pathway into the fin, followed by presumptive fin cells, and a ventral pathway along the neural tube and notochord, followed by presumptive pigment, sensory ganglion, sympathetic ganglion and adrenal medullary cells. In the caudal trunk, two additional paths were noted. One group of cells moves circumferentially within the fin, in an arc from dorsal to ventral; another progresses ventrally to the anus and subsequently populates the ventral fin. By labelling individual precursor cells, we find that neural tube and neural crest cells often share a common precursor. The majority of clones contain labelled progeny cells in the dorsal fin. The remainder have progeny in multiple derivatives including spinal ganglion cells, pigment cells, enteric cells, fin cells and/or neural tube cells in all combinations, suggesting that many premigratory Xenopus neural crest precursors are multipotent
Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling
Analysis of neural crest cell migration in the mouse has been difficult due to the lack of reliable cell markers. Recently, we found that injection of DiI into the chick neural tube marks premigratory neural crest cells whose endfeet are in contact with the lumen of the neural tube (Serbedzija et al. Development 106, 809ā819 (1989)). In the present study, this technique was applied to study neural crest cell migratory pathways in the trunk of the mouse embryo. Embryos were removed from the mother between the 8th and the 10th days of development and DiI was injected into the lumen of the neural tube. The embryos were then cultured for 12 to 24 h, and analyzed at the level of the forelimb. We observed two predominant pathways of neural crest cell migration: (1) a ventral pathway through the rostral portion of the somite and (2) a dorsolateral pathway between the dermamyotome and the epidermis. Neural crest cells were observed along the dorsolateral pathway throughout the period of migration. The distribution of labelled cells along the ventral pathway suggested that there were two overlapping phases of migration. An early ventrolateral phase began before E9 and ended by E9.5; this pathway consisted of a stream of cells within the rostral sclerotome, adjacent to the dermamyotome, that extended ventrally to the region of the sympathetic ganglia and the dorsal aorta
A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration
To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway
- ā¦