3 research outputs found

    Nanoemulsion with wine lees: a green approach

    Get PDF
    Abstract Bioactive substances can be found in wine lees, a waste from the winemaking industry. This work developed two formulations, a nanoemulsion with coconut oil (NE-OC) and a nanoemulsion with coconut oil and 0.5% of wine lees extract (NE-OC-Ext), to investigate their effect on untreated, bleached, and bleached-colored hair. The oil-in-water (O/W) nanoemulsions were prepared with coconut oil, TweenTM 80, SpanTM 80, AristoflexTM AVC, Conserve NovaMit MFTM, wine lees extract, and deionized water. The hydration measurements were carried out using a Corneometer® CM 825 with the capacitance method. Scanning electron microscopy (SEM) was used to characterize the effect of formulations on hair fibers. Differential Thermal Analysis (DTA) was to assess the thermal stability and compatibility of wine lees and coconut oil in formulations. Compared to NE-OC, NE-OC-Ext showed a greater hydration effect on bleached-colored hair. DTA showed that NE-OC-Ext presented a smaller number of exothermic degradation events than those of NE-OC, suggesting good interaction and compatibility of the wine lees extract in this formulation. This study highlights the value of wine lees, a residue from the winemaking process, and its possibility of use as raw material for the cosmetic hair industry since it shows a greater moisturizing potential in colored hair

    The development and characterization of Propranolol Tablets using Tapioca starch as excipient

    No full text
    Abstract: Tapioca starch (TS) is produced from Cassaca roots and it is differentiated from other starches because it contains about 17–20% amylase and low amount of residual substances. Propranolol (POP) is a non-selective beta-adrenergic blocking agent and it is in the World Health Organization’s List of Essential Medicines. The aim of this work was to investigate the potential of TS in the development of POP tablets by means of direct compression. Its evaluation was performed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) relaxometry, scanning electron microscopy (SEM), uniformity of weight, drug content, disintegration, friability, hardness, dissolution test and drug release kinetics. The TS granules were spherical with mean diameter of 10.09 ± 1.85 µm. The XRD, FTIR and NMR suggested physical interaction between TS and POP. The tablets presented average diameter of 1.1 ± 0.0 cm, 0.24 ± 0.02 cm thickness and average weight of 0.544 ± 0.003 g. The hardness of tablets was 10.98 ± 0.31 N and the percentage of friability was 25.74 ± 0.08%. POP was released after 45 min and the release kinetics properly fitted the Hixson-Crowell equation
    corecore