2 research outputs found

    Sequential morphological characteristics of murine fetal liver hematopoietic microenvironment in Swiss Webster mice

    Get PDF
    Embryonic hematopoiesis occurs via dynamic development with cells migrating into various organs. Fetal liver is the main hematopoietic organ responsible for hematopoietic cell expansion during embryologic development. We describe the morphological sequential characteristics of murine fetal liver niches that favor the settlement and migration of hematopoietic cells from 12 days post-coitum (dpc) to 0 day post-partum. Liver sections were stained with hematoxylin and eosin, Lennert’s Giemsa, Sirius Red pH 10.2, Gomori’s Reticulin, and Periodic Acid Schiff/Alcian Blue pH 1.0 and pH 2.5 and were analyzed by bright-field microscopy. Indirect imunohistochemistry for fibronectin, matrix metalloproteinase-1 (MMP-1), and MMP-9 and histochemistry for naphthol AS-D chloroacetate esterase (NCAE) were analyzed by confocal microscopy. The results showed that fibronectin was related to the promotion of hepatocyte and trabecular differentiation; reticular fibers did not appear to participate in fetal hematopoiesis but contributed to the physical support of the liver after 18 dpc. During the immature phase, hepatocytes acted as the fundamental stroma for the erythroid lineage. The appearance of myeloid cells in the liver was related to perivascular and subcapsular collagen, and NCAE preceded MMP-1 expression in neutrophils, an occurrence that appeared to contribute to their liver evasion. Thus, the murine fetal liver during ontogenesis shows two different phases: one immature and mainly endodermic (<14 dpc) and the other more developed (endodermic-mesenchymal; >15 dpc) with the maturation of hepatocytes, a better definition of trabecular pattern, and an increase in the connective tissue in the capsule, portal spaces, and liver parenchyma. The decrease of hepatic hematopoiesis (migration) coincides with hepatic maturation

    Animal Welfare in Radiation Research: The Importance of Animal Monitoring System

    No full text
    Long-term research into radiation exposure significantly expanded following World War II, driven by the increasing number of individuals falling ill after the detonation of two atomic bombs in Japan. Consequently, researchers intensified their efforts to investigate radiation’s effects using animal models and to study disease models that emerged post-catastrophe. As a result, several parameters have been established as essential in these models, encompassing radiation doses, regimens involving single or multiple irradiations, the injection site for transplantation, and the quantity of cells to be injected. Nonetheless, researchers have observed numerous side effects in irradiated animals, prompting the development of scoring systems to monitor these animals’ well-being. The aim of this review is to delve into the historical context of using animals in radiation research and explore the ethical considerations related to animal welfare, which has become an increasingly relevant topic in recent years. These concerns have prompted research groups to adopt measures aimed at reducing animal suffering. Consequently, for animal welfare, the implementation of a scoring system for clinical and behavioral monitoring is essential. This represents one of the primary challenges and hurdles in radiation studies. It is concluded that implementing standardized criteria across all institutions is aimed at ensuring result reproducibility and fostering collaboration within the scientific community
    corecore