30 research outputs found
The HOXB4 Homeoprotein Promotes the Ex Vivo Enrichment of Functional Human Embryonic Stem Cell-Derived NK Cells
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34+CD45RA+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells
The endothelium, a key actor in organ development and hPSC-derived organoid vascularization
International audienceAbstract Over the last 4 decades, cell culture techniques have evolved towards the creation of in vitro multicellular entities that incorporate the three-dimensional complexity of in vivo tissues and organs. As a result, stem cells and adult progenitor cells have been used to derive self-organized 3D cell aggregates that mimic the morphological and functional traits of organs in vitro. These so-called organoids were first generated from primary animal and human tissues, then human pluripotent stem cells (hPSCs) arose as a new tool for organoid generation. Due to their self-renewal capacity and differentiation potential, hPSCs are an unlimited source of cells used for organoids. Today, hPSC-derived small intestinal, kidney, brain, liver, and pancreas organoids, among others, have been produced and are promising in vitro human models for diverse applications, including fundamental research, drug development and regenerative medicine. However, achieving in vivo-like organ complexity and maturation in vitro remains a challenge. Current hPSC-derived organoids are often limited in size and developmental state, resembling embryonic or fetal organs rather than adult organs. The use of endothelial cells to vascularize hPSC-derived organoids may represent a key to ensuring oxygen and nutrient distribution in large organoids, thus contributing to the maturation of adult-like organoids through paracrine signaling. Here, we review the current state of the art regarding vascularized hPSC-derived organoids (vhPSC-Orgs). We analyze the progress achieved in the generation of organoids derived from the three primary germ layers (endoderm, mesoderm and ectoderm) exemplified by the pancreas, liver, kidneys and brain. Special attention will be given to the role of the endothelium in the organogenesis of the aforementioned organs, the sources of endothelial cells employed in vhPSC-Org protocols and the remaining challenges preventing the creation of ex vivo functional and vascularized organs
Global MicroRNA Profiling Uncovers miR-206 as a Negative Regulator of Hematopoietic Commitment in Human Pluripotent Stem Cells
Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells
Involvement of the same TNFR1 residue in mendelian and multifactorial inflammatory disorders.
OBJECTIVES: TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92. METHODS: TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1. RESULTS: A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10(-4)). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor. CONCLUSIONS: These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions
Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor
International audienceAbstract Background hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages. Methods Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144 + -embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144 + , respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other’s ( e.g. hPSC-ECs vs. hPSC-EB-CD144 + ) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations. Results A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144 + contributed to the generation of CD45 + human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144 + . Endothelial differentiation of hPSC-EB-CD144 + yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144 + generated an intermediate population of > 90% CD43 + hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144 + , hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144 + CD45 + , a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors. Conclusion The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering
Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines
International audienceHematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process
Brief Report: Involvement of TNFRSF11A Molecular Defects in Autoinflammatory Disorders
International audienceObjective: Autoinflammatory disorders are caused by a primary dysfunction of the innate immune system. Among these disorders are hereditary recurrent fevers, which are characterized by recurrent episodes of fever and inflammatory manifestations affecting multiple tissues. Hereditary recurrent fevers often lack objective diagnostic criteria, thereby hampering the identification of disease-causing genes. This study was undertaken to identify a gene responsible for hereditary recurrent fevers.Methods: Copy number variations and point mutations were sought by array-comparative genomic hybridization and polymerase chain reaction sequencing, respectively. Serum cytokine levels were measured using Luminex technology. The effect of TNFRSF11A molecular defects on NF-κB signaling in cells expressing wild-type and mutated forms of the receptor was evaluated by luciferase assay.Results: A patient with multiple congenital anomalies and hereditary recurrent fever was found to carry a de novo heterozygous complex chromosomal rearrangement encompassing a duplication of TNFRSF11A, a gene known to regulate fever in rodents. We also identified a heterozygous frameshift mutation (p.Met416Cysfs*110) in TNFRSF11A in a mother and daughter with isolated hereditary recurrent fever. This mutation was associated with increased secretion of several inflammatory cytokines (tumor necrosis factor α [TNFα], interleukin-18 [IL-18], IL-1 receptor antagonist, interferon-γ) and altered the biologic effects of the receptor on NF-κB signaling. The disease in the patients described herein exhibits striking clinical similarities to TNF receptor-associated periodic syndrome, another hereditary recurrent fever involving a gene of the same family (TNFRSF1A).Conclusion: The involvement of TNFRSF11A in hereditary recurrent fever highlights the key role of this receptor in innate immunity. The present results also suggest that TNFRSF11A screening could serve as a new diagnostic test for autoinflammatory disorders
Analysis of NK differentiation potential and NK progenitor cell expansion mediated by HOXB4.
<p>(A) Percentages of NK cells (CD56<sup>+</sup>CD3<sup>−</sup>CD19<sup>−</sup>) among nucleated cells collected at the end of 5 weeks of co-culture. Cells derived from the 2 weeks primary co-cultures with MS-5/SP-HOXB4 or MS-5/EGFP were then plated on unmodified MS-5 cells in conditions known to promote NK-cell differentiation and maintained during three weeks. At the end of the culture period, cells were analyzed by FACS for the expression of CD56 and CD3/CD19 markers. Un-co-cultured hEB cells were directly cultured under NK-cell differentiation conditions for 3 weeks (n = 5, *<i>p</i><0.05, **<i>p</i><0.01). (B) Fold increase of total NK cells. NK cells were derived from total cells isolated from the primary 2-week co-cultures of hEB-derived cells with either MS-5/SP-HOXB4 or MS-5/EGFP control and then cultured under NK-cell differentiation condition for three weeks. NK cells were then numbered. Bars represent fold amplifications relative to day-0 control (un-co-cultured hEBs) (designated as 100%) (n = 5, *<i>p</i><0,05).</p
NK-cell culture procedure of hESC-derived hematopoietic precursor cells.
<p>Schematic representation of the three steps of NK-cells differentiation from hESCs. hEBs derived from the H1 hESC cell line were dissociated then co-cultured with MS-5/SP-HOXB4 cells or MS-5/EGFP cells as control during 2 weeks. Then, the cells derived from the first step of co-culture were submitted to a second step of 3-week co-culture with unmodified MS-5 cells, in permissive conditions for NK-cell differentiation in presence of SCF, IL-2 and IL-15. NK-cell culture differentiation was conducted directly with un-co-cultured hEB-derived cells as control. (B) Analysis of the presence of the HOXB4 protein within hEB-derived cells co-cultured with either MS-5/SP-HOXB4 (dark line) or MS-5/EGFP (dotted line) stromal cell lines. Data are from one experiment out of two. Gray histogram corresponds to isotypic control. Abbreviations : cy, cytoplasmic.</p