4 research outputs found

    Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats

    No full text
    Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association’s efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects

    “K-Powder” Exposure during Adolescence Elicits Psychiatric Disturbances Associated with Oxidative Stress in Female Rats

    No full text
    Ketamine, also called ‘K-powder’ by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus
    corecore