7 research outputs found

    Comparison Between High-Flow Nasal Cannula and Noninvasive Ventilation for Acute Hypoxemic Respiratory Failure: A Retrospective Study

    Get PDF
    OBJETIVO: Avaliar o impacto da cânula nasal de alto fluxo (CNAF) em doentes com insuficiência respiratória aguda hipoxémica (IRAH), em comparação com ventilação mecânica não invasiva (VNI). MÉTODOS: Conduzimos um estudo retrospetivo unicêntrico de doentes com IRAH admitidos na Unidade de Cuidados Intensivos (UCI) que realizaram CNAF ou VNI. Os outcomes primários incluem mortalidade na UCI e mortalidade aos 90 dias. A necessidade de ventilação mecânica invasiva (VMI) e o tempo de internamento na UCI foram definidos como outcomes secundários. RESULTADOS: Um total de 101 doentes foram incluídos no estudo (VNI 82; CNAF 19). A mortalidade na UCI (VNI 19.5% e CNAF 0%; p=0.037) e a necessidade de VMI (VNI 45.1% e CNAF 15.8%; p=0.018) foram significativamente menores no grupo da CNAF. Não foram observadas diferenças na mortalidade aos 90 dias ou no tempo de internamento na UCI. Na análise de subgrupo, a CNAF associou-se a menor risco de internamentos mais longos na UCI nos seguintes subgrupos: 100<rácio PaO2/FiO2≤200; 200<rácio PaO2/FiO2≤300; Pneumonia, Síndrome de dificuldade respiratória aguda ou Outra como causa de IRAH. Contudo, em doentes com Insuficiência cardíaca descompensada, a CNAF associou-se a um risco aumentado de internamentos mais longos na UCI. CONCLUSÃO: Entre pacientes com IRAH, a CNAF associou-se a mortalidade na UCI e necessidade de VMI significativamente menores.PURPOSE: To evaluate the impact of high-flow nasal cannula (HFNC) on patients with acute hypoxemic respiratory failure (AHRF) when compared to noninvasive mechanical ventilation (NIV). METHODS: We conducted a retrospective single-center study of patients with AHRF admitted in the Intensive Care Unit (ICU) who performed HFNC or NIV. The primary outcomes included mortality during ICU stay and 90-day mortality. The need for invasive mechanical ventilation (IMV) and ICU length of stay were defined as secondary outcomes. RESULTS: A total of 101 patients were included in the study (NIV 82; HFNC 19). Mortality during ICU stay (NIV 19.5% versus HFNC 0%; p=0.037) and need for IMV (NIV 45.1% versus HFNC 15.8%; p=0.018) were significantly lower in the HFNC group. No differences were observed in 90-day mortality or ICU length of stay. In the subgroup analysis, HFNC was associated with a decreased risk of longer ICU stay in the following subgroups: 100<PaO2/FiO2 ratio≤200; 200<PaO2/FiO2 ratio≤300; Pneumonia, Acute respiratory distress syndrome or Other as cause of AHRF. However, in patients with Decompensated heart failure, HFNC was associated with an increased risk of longer ICU stay. CONCLUSION: Among AHRF patients, HFNC was associated with significantly lower mortality during ICU stay and need for IMV

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Mechanical ventilation and death in pregnant patients admitted for COVID-19: a prognostic analysis from the Brazilian COVID-19 registry score

    Get PDF
    Abstract Background The assessment of clinical prognosis of pregnant COVID-19 patients at hospital presentation is challenging, due to physiological adaptations during pregnancy. Our aim was to assess the performance of the ABC2-SPH score to predict in-hospital mortality and mechanical ventilation support in pregnant patients with COVID-19, to assess the frequency of adverse pregnancy outcomes, and characteristics of pregnant women who died. Methods This multicenter cohort included consecutive pregnant patients with COVID-19 admitted to the participating hospitals, from April/2020 to March/2022. Primary outcomes were in-hospital mortality and the composite outcome of mechanical ventilation support and in-hospital mortality. Secondary endpoints were pregnancy outcomes. The overall discrimination of the model was presented as the area under the receiver operating characteristic curve (AUROC). Overall performance was assessed using the Brier score. Results From 350 pregnant patients (median age 30 [interquartile range (25.2, 35.0)] years-old]), 11.1% had hypertensive disorders, 19.7% required mechanical ventilation support and 6.0% died. The AUROC for in-hospital mortality and for the composite outcome were 0.809 (95% IC: 0.641–0.944) and 0.704 (95% IC: 0.617–0.792), respectively, with good overall performance (Brier = 0.0384 and 0.1610, respectively). Calibration was good for the prediction of in-hospital mortality, but poor for the composite outcome. Women who died had a median age 4 years-old higher, higher frequency of hypertensive disorders (38.1% vs. 9.4%, p < 0.001) and obesity (28.6% vs. 10.6%, p = 0.025) than those who were discharged alive, and their newborns had lower birth weight (2000 vs. 2813, p = 0.001) and five-minute Apgar score (3.0 vs. 8.0, p < 0.001). Conclusions The ABC2-SPH score had good overall performance for in-hospital mortality and the composite outcome mechanical ventilation and in-hospital mortality. Calibration was good for the prediction of in-hospital mortality, but it was poor for the composite outcome. Therefore, the score may be useful to predict in-hospital mortality in pregnant patients with COVID-19, in addition to clinical judgment. Newborns from women who died had lower birth weight and Apgar score than those who were discharged alive
    corecore