18 research outputs found
Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates
Homoaggregates of isocyanic acid (HNCO) were studied using FTIR spectroscopy combined with a low-temperature matrix isolation technique and quantum chemical calculations. Computationally, the structures of the HNCO dimers and trimers were optimized at the MP2, B3LYPD3 and B2PLYPD3 levels of theory employing the 6-311++G(3df,3pd) basis set. Topological analysis of the electron density (AIM) was used to identify the type of non-covalent interactions in the studied aggregates. Five stable minima were located on the potential energy surface for (HNCO)2, and nine were located on the potential energy surface for (HNCO)3. The most stable dimer (D1) involves a weak, almost linear N-H⋯N hydrogen bond. Other structures are bound by a N-H⋯O hydrogen bond or by O⋯C or N⋯N van der Waals interactions. Similar types of interactions as in (HNCO)2 were found in the case of HNCO trimers. Among nine stable (HNCO)3 structures, five represent cyclic forms. The most stable T1 trimer structure is characterized by a six-membered ring formed by three N-H⋯N hydrogen bonds and representing high symmetry (C3h). The analysis of the HNCO/Ar spectra after deposition indicates that the N-H⋯O hydrogen-bonded dimers are especially prevalent. Upon annealing, HNCO trimers were observed as well. Identification of the experimentally observed species relied on previous experimental data on HNCO complexes as well as computed data on HNCO homoaggregates’ vibrational spectra.peerReviewe
Structure and IR Spectroscopic Properties of HNCO Complexes with SO2 Isolated in Solid Argon
FTIR spectroscopy was combined with the matrix isolation technique and quantum chemical calculations with the aim of studying complexes of isocyanic acid with sulfur dioxide. The structures of the HNCO⋯SO2 complexes of 1:1, 1:2 and 2:1 stoichiometry were optimized at the MP2, B3LYPD3, B2PLYPD3 levels of theory with the 6-311++G(3df,3pd) basis set. Five stable 1:1 HNCO⋯SO2 complexes were found. Three of them contain a weak N-H⋯O hydrogen bond, whereas two other structures are stabilized by van der Waals interactions. The analysis of the HNCO/SO2/Ar spectra after deposition indicates that mostly the 1:1 hydrogen-bonded complexes are present in argon matrices, with a small amount of the van der Waals structures. Upon annealing, complexes of the 1:2 stoichiometry were detected, as well.peerReviewe
Matrix Isolation FTIR and Theoretical Study of Weakly Bound Complexes of Isocyanic Acid with Nitrogen
Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.peerReviewe
Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates
Homoaggregates of isocyanic acid (HNCO) were studied using FTIR spectroscopy combined with a low-temperature matrix isolation technique and quantum chemical calculations. Computationally, the structures of the HNCO dimers and trimers were optimized at the MP2, B3LYPD3 and B2PLYPD3 levels of theory employing the 6-311++G(3df,3pd) basis set. Topological analysis of the electron density (AIM) was used to identify the type of non-covalent interactions in the studied aggregates. Five stable minima were located on the potential energy surface for (HNCO)2, and nine were located on the potential energy surface for (HNCO)3. The most stable dimer (D1) involves a weak, almost linear N-H⋯N hydrogen bond. Other structures are bound by a N-H⋯O hydrogen bond or by O⋯C or N⋯N van der Waals interactions. Similar types of interactions as in (HNCO)2 were found in the case of HNCO trimers. Among nine stable (HNCO)3 structures, five represent cyclic forms. The most stable T1 trimer structure is characterized by a six-membered ring formed by three N-H⋯N hydrogen bonds and representing high symmetry (C3h). The analysis of the HNCO/Ar spectra after deposition indicates that the N-H⋯O hydrogen-bonded dimers are especially prevalent. Upon annealing, HNCO trimers were observed as well. Identification of the experimentally observed species relied on previous experimental data on HNCO complexes as well as computed data on HNCO homoaggregates’ vibrational spectra
UV Laser-Induced Phototransformations of Matrix-Isolated 5-Chloro-3-nitro-2-hydroxyacetophenone
Conformational changes of 5-chloro-3-nitro-2-hydroxyacetophenone were studied by experimental and theoretical methods. Phototransformations of the compound were induced in low-temperature argon matrices by using UV radiation, which was followed by FT-IR measurements. Two types of changes within the molecule were detected: rotations of the hydroxyl and acetyl groups. A new conformer without an intramolecular hydrogen bond was generated upon irradiation with λ = 330 nm, whereas the reverse reaction was observed at 415 nm
UV laser induced photolysis of glycolic acid isolated in argon matrices
The photochemistry of matrix-isolated glycolic acid, induced by UV light, was studied by FTIR spectroscopy and B3LYPD3/6-311++G(3df,3pd) calculations. Several decomposition pathways were found to take place upon 212 nm and 226 nm wavelengths irradiation. A number of complexes formed between photoproducts were identified, among them those of formaldehyde with water, carbon monoxide and carbon dioxide as well as the H2O-CO complexes. The structure and spectroscopic assignment of the photoproducts were made comparing the experimental results with the theoretical predictions and available literature data. The observed formation of different complexes indicates various pathways for their formation resulting from UV-induced photodecomposition of different precursor isomers.peerReviewe
Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I : Structures and Thermal Effects
Molecular complexes between glycolic acid and nitrogen were studied in a low-temperature argon matrix with FTIR spectroscopy, and supported by MP2 and BLYPD3 calculations. The calculations indicate 11 and 10 stable complex structures at the MP2 and BLYPD3 levels of theories, respectively. However, only one hydrogen-bonded complex structure involving the most stable SSC conformer of glycolic acid was found experimentally, where the nitrogen molecule is bound with the carboxylic OH group of the SSC conformer. The complex shows a rich site structure variation upon deposition of the matrix in different temperatures and upon annealing experiments, which provide interesting prospects for site-selective chemistry.peerReviewe
Raman spectroscopy of glycolic acid complexes with N2
High overtone excitation induced conformational isomerization of glycolic acid – nitrogen complex in an argon matrix was investigated by Raman spectroscopy. The interaction between glycolic acid and nitrogen change the green light (532 nm) induced isomerization processes compared to non-complexed glycolic acid. The 180° rotation around of the Csingle bondC bond and stabilization of carboxyl Odouble bondCsingle bondOsingle bondH dihedral angle to trans position were the main conformational changes observed in the complex of the lowest energy conformer and nitrogen. Interestingly, only one stable light-induced conformational product was observed, which isomerises back to the lowest energy conformer upon prolonged irradiation at 532 nm. The vibrational Raman spectrum of glycolic acid – nitrogen complex and the analysis of the isomerization kinetics are presented.peerReviewe
FTIR matrix isolation and theoretical studies of glycolic acid dimers
Glycolic acid (GA) dimers were studied in low temperature argon matrices by means of FTIR spectroscopy. Experimentally, the dimers were produced when monomeric glycolic acid molecules were thermally mobilized upon annealing of argon matrices at 25–35 K. The experimental spectra observed upon annealing indicate the presence of three different dimer structures. Computationally, MP2 and DFT calculations were used to study the potential dimer species in order to scrutinize the possible dimer structures, their energetics and their spectral features. Altogether 27 local minima were found for dimer structures for the three lowest conformers of glycolic acid considered based on previous studies on glycolic monomer in argon matrices. Comparing the computational and the experimental spectra especially in the O–H and C=O stretching regions it was possible to assign the experimental observations to the three most stable dimer species.peerReviewe