9 research outputs found

    Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies

    Full text link
    Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5-188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.publisher: Elsevier articletitle: Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies journaltitle: Biochimie articlelink: http://dx.doi.org/10.1016/j.biochi.2013.04.014 content_type: article copyright: Copyright © 2013 Elsevier Masson SAS. All rights reserved.status: publishe

    Properties of the Monomeric Form of Human 14-3-3ζ Protein and Its Interaction with Tau and HspB6

    Full text link
    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E<sup>5</sup>, <sup>12</sup>LAE<sup>14</sup>, and <sup>82</sup>YREKIE<sup>87</sup>. Under a wide range of expression conditions in <i>Escherichia coli</i>, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ

    Properties of the Monomeric Form of Human 14-3-3ζ Protein and Its Interaction with Tau and HspB6

    Full text link
    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E<sup>5</sup>, <sup>12</sup>LAE<sup>14</sup>, and <sup>82</sup>YREKIE<sup>87</sup>. Under a wide range of expression conditions in <i>Escherichia coli</i>, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ

    Properties of the Monomeric Form of Human 14-3-3ζ Protein and Its Interaction with Tau and HspB6

    Full text link
    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E<sup>5</sup>, <sup>12</sup>LAE<sup>14</sup>, and <sup>82</sup>YREKIE<sup>87</sup>. Under a wide range of expression conditions in <i>Escherichia coli</i>, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ

    Monomeric 14-3-3ζ Has a Chaperone-Like Activity and Is Stabilized by Phosphorylated HspB6

    Full text link
    Members of the 14-3-3 eukaryotic protein family predominantly function as dimers. The dimeric form can be converted into monomers upon phosphorylation of Ser<sup>58</sup> located at the subunit interface. Monomers are less stable than dimers and have been considered to be either less active or even inactive during binding and regulation of phosphorylated client proteins. However, like dimers, monomers contain the phosphoserine-binding site and therefore can retain some functions of the dimeric 14-3-3. Furthermore, 14-3-3 monomers may possess additional functional roles owing to their exposed intersubunit surfaces. Previously we have found that the monomeric mutant of 14-3-3ζ (14-3-3ζ<sub>m</sub>), like the wild type protein, is able to bind phosphorylated small heat shock protein HspB6 (pHspB6), which is involved in the regulation of smooth muscle contraction and cardioprotection. Here we report characterization of the 14-3-3ζ<sub>m</sub>/pHspB6 complex by biophysical and biochemical techniques. We find that formation of the complex retards proteolytic degradation and increases thermal stability of the monomeric 14-3-3, indicating that interaction with phosphorylated targets could be a general mechanism of 14-3-3 monomers stabilization. Furthermore, by using myosin subfragment 1 (S1) as a model substrate we find that the monomer has significantly higher chaperone-like activity than either the dimeric 14-3-3ζ protein or even HspB6 itself. These observations indicate that 14-3-3ζ and possibly other 14-3-3 isoforms may have additional functional roles conducted by the monomeric state

    Properties of the Monomeric Form of Human 14-3-3ζ Protein and Its Interaction with Tau and HspB6

    Full text link
    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E<sup>5</sup>, <sup>12</sup>LAE<sup>14</sup>, and <sup>82</sup>YREKIE<sup>87</sup>. Under a wide range of expression conditions in <i>Escherichia coli</i>, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ
    corecore