4 research outputs found

    Drosophila melanogaster Sperm under Simulated Microgravity and a Hypomagnetic Field: Motility and Cell Respiration

    No full text
    The role of the Earth’s gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids

    Influence of Electrophoresis of Antler Mass on Restorative Processes in Young Athletes during the Preparatory Period of a One-Year Training Cycle

    No full text
    We investigated the influence of electrophoresis of antler mass (according to Vermel’s method) on the peripheral blood and indicators of cardiac function in elite athletes during intensive exercise during the preparatory period. This study included 27 male athletes, aged 16-17 years old. Application of electrophoresis of antler mass led to improvement of hemoglobin level and hematocrit, mean corpuscular hemoglobin concentration (MCHC), normalization of hormonal status and myocardial metabolism, and promoted increased fitness and adaptability to physical stress
    corecore