110 research outputs found

    Variability of cardiac troponin levels in normal subjects and in patients with cardiovascular diseases: analytical considerations and clinical relevance

    Get PDF
    : In accordance with all the most recent international guidelines, the variation of circulating levels of cardiac troponins I and T, measured with high-sensitivity methods (hs-cTnI and hs-cTnT), should be used for the detection of acute myocardial injury. Recent experimental and clinical evidences have demonstrated that the evaluation of hs-cTnI and hs-cTnT variations is particularly relevant: a) for the differential diagnosis of Acute Coronary Syndromes (ACS) in patients admitted to the Emergency Department (ED); b) for the evaluation of cardiovascular risk in patients undergoing major cardiac or non-cardiac surgery, and in asymptomatic subjects of the general population aged >55 years and with co-morbidities; c) for the evaluation of cardiotoxicity caused by administration of some chemotherapy drugs in patients with malignant tumors. The aim of this document is to discuss the fundamental statistical and biological considerations on the intraindividual variability of hs-cTnI and hs-cTnT over time in the same individual. Firstly, it will be discussed in detail as the variations of circulating levels strictly depend not only on the analytical error of the method used but also on the intra-individual variability of the biomarker. Afterwards, the pathophysiological interpretation and the clinical relevance of the determination of the variability of the hs-cTnI and hs-cTnT values ​​ in patients with specific clinical conditions are discussed. Finally, the evaluation over time of the variation in circulating levels of hs-cTnI and hs-cTnT is proposed for a more accurate estimation of cardiovascular risk in asymptomatic subjects from the general population

    Increased Perioperative N-Terminal Pro-B-Type Natriuretic Peptide Levels Predict Atrial Fibrillation After Thoracic Surgery for Lung Cancer

    Get PDF
    Background— Postoperative atrial fibrillation (AF) is a complication of thoracic surgery for lung cancer, with a reported incidence that can run as high as 42%. Recently, it has been observed retrospectively that B-type natriuretic peptide predicts AF after cardiac surgery. We performed a prospective study to evaluate the role of N-terminal pro–B-type natriuretic peptide (NT-proBNP) as a marker for risk stratification of postoperative AF in patients undergoing thoracic surgery for lung cancer. Methods and Results— We measured NT-proBNP levels in 400 patients (mean age, 62±10 years; 271 men) 24 hours before and 1 hour after surgery. The primary end point of the study was the incidence of postoperative AF. Overall, postoperative AF occurred in 72 patients (18%). Eighty-eight patients (22%) showed an elevated perioperative NT-proBNP value. When patients with either preoperatively or postoperatively elevated NT-proBNP were pooled, a greater incidence of AF was observed compared with patients with normal values (64% versus 5%; P <0.001). At multivariable analysis, adjusted for age, gender, major comorbidities, echocardiography parameters, pneumonectomy, and medications, both preoperative and postoperative NT-proBNP values were independent predictors of AF (relative risk, 27.9; 95% CI, 13.2 to 58.9; P <0.001 for preoperative NT-proBNP elevation; relative risk, 20.1; 95% CI, 5.8 to 69.4; P <0.001 for postoperative NT-proBNP elevation). Conclusions— Elevation of perioperative NT-proBNP is a strong independent predictor of postoperative AF in patients undergoing thoracic surgery for lung cancer. This finding should facilitate studies of therapies to reduce AF in selected high-risk patients

    Assessing the predictive performance of population pharmacokinetic models for intravenous polymyxin B in critically ill patients

    Get PDF
    Polymyxin B (PMB) has reemerged as a last-line therapy for infections caused by multidrug-resistant gram-negative pathogens, but dosing is challenging because of its narrow therapeutic window and pharmacokinetic (PK) variability. Population PK (POPPK) models based on suitably powered clinical studies with appropriate sampling strategies that take variability into consideration can inform PMB dosing to maximize efficacy and minimize toxicity and resistance. Here we reviewed published PMB POPPK models and evaluated them using an external validation data set (EVD) of patients who are critically ill and enrolled in an ongoing clinical study to assess their utility. Seven published POPPK models were employed using the reported model equations, parameter values, covariate relationships, interpatient variability, parameter covariance, and unexplained residual variability in NONMEM (Version 7.4.3). The predictive ability of the models was assessed using prediction-based and simulation-based diagnostics. Patient characteristics and treatment information were comparable across studies and with the EVD (n = 40), but the sampling strategy was a main source of PK variability across studies. All models visually and statistically underpredicted EVD plasma concentrations, but the two-compartment models more accurately described the external data set. As current POPPK models were inadequately predictive of the EVD, creation of a new POPPK model based on an appropriately powered clinical study with an informed PK sampling strategy would be expected to improve characterization of PMB PK and identify covariates to explain interpatient variability. Such a model would support model-informed precision dosing frameworks, which are urgently needed to improve PMB treatment efficacy, limit resistance, and reduce toxicity in patients who are critically ill

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    Molecular profiling of single circulating tumor cells with diagnostic intention

    Get PDF
    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of >90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance

    Report on the International Colloquium on Cardio-Oncology (Rome, 12–14 March 2014)

    Get PDF
    Cardio-oncology is a relatively new discipline that focuses on the cardiovascular sequelae of anti-tumour drugs. As any other young adolescent discipline, cardio-oncology struggles to define its scientific boundaries and to identify best standards of care for cancer patients or survivors at risk of cardiovascular events. The International Colloquium on Cardio-Oncology was held in Rome, Italy, 12–14 March 2014, with the aim of illuminating controversial issues and unmet needs in modern cardio-oncology. This colloquium embraced contributions from different kind of disciplines (oncology and cardiology but also paediatrics, geriatrics, genetics, and translational research); in fact, cardio-oncology goes way beyond the merging of cardiology with oncology. Moreover, the colloquium programme did not review cardiovascular toxicity from one drug or the other, rather it looked at patients as we see them in their fight against cancer and eventually returning to everyday life. This represents the melting pot in which anti-cancer therapies, genetic backgrounds, and risk factors conspire in producing cardiovascular sequelae, and this calls for screening programmes and well-designed platforms of collaboration between one key professional figure and another. The International Colloquium on Cardio-Oncology was promoted by the Menarini International Foundation and co-chaired by Giorgio Minotti (Rome), Joseph R Carver (Philadelphia, Pennsylvania, United States), and Steven E Lipshultz (Detroit, Michigan, United States). The programme was split into five sessions of broad investigational and clinical relevance (what is cardiotoxicity?, cardiotoxicity in children, adolescents, and young adults, cardiotoxicity in adults, cardiotoxicity in special populations, and the future of cardio-oncology). Here, the colloquium chairs and all the session chairs briefly summarised what was said at the colloquium. Topics and controversies were reported on behalf of all members of the working group of the International Colloquium on Cardio-Oncology

    Molecular profiling of single circulating tumor cells with diagnostic intention

    Get PDF
    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of >90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance

    International study on inter-reader variability for circulating tumor cells in breast cancer

    Get PDF
    Introduction: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearchÂź system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.Methods: CellSearchÂź images (N = 272) of either CTCs or white blood cells or artifacts from 109 non-metastatic (M0) and 22 metastatic (M1) breast cancer patients from reported studies were sent to 22 readers from 15 academic laboratories and 8 readers from two Veridex laboratories. Each image was scored as No CTC vs CTC HER2- vs CTC HER2+. The 8 Veridex readers were summarized to a Veridex Consensus (VC) to compare each academic reader using % agreement and kappa (Îș) statistics. Agreement was compared according to disease stage and CTC counts using the Wilcoxon signed rank test.Results: For CTC definition (No CTC vs CTC), the median agreement between academic readers and VC was 92% (range 69 to 97%) with a median Îș of 0.83 (range 0.37 to 0.93). Lower agreement was observed in images from M0 (median 91%, range 70 to 96%) compared to M1 (median 98%, range 64 to 100%) patients (P < 0.001) and from M0 and <3CTCs (median 87%, range 66 to 95%) compared to M0 and ≄3CTCs samples (median 95%, range 77 to 99%), (P < 0.001). For CTC HER2 expression (HER2- vs HER2+), the median agreement was 87% (range 51 to 95%) with a median Îș of 0.74 (range 0.25 to 0.90).Conclusions: The inter-reader agreement for CTC definition was high. Reduced agreement was observed in M0 patients with low CTC counts. Continuous training and independent image review are required
    • 

    corecore