6 research outputs found

    MAFB modulates the maturation of lymphatic vascular networks in mice

    No full text
    Background: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co‐ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC‐VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. Results: We generated a Mafb loss‐of‐function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. Conclusions: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis

    Spectral Library of Maize Leaves under Nitrogen Deficiency Stress

    No full text
    Maize crops occupy an important place in world food security. However, different conditions, such as abiotic stress factors, can affect the productivity of these crops, requiring technologies that facilitate their monitoring. One such technology is spectroscopy, which measures the energy reflected and emitted by a surface along the electromagnetic spectrum. Spectral data can help to identify abiotic factors in plants, since the spectral signature of vegetation has discriminating features associated with the plant’s health condition. This paper introduces a spectral library captured on maize crops under different nitrogen-deficiency stress levels. The datasets will be of potential interest to researchers, ecologists, and agronomists seeking to understand the spectral features of maize under nitrogen-deficiency stress. The library includes three datasets captured at different growth stages of 10 tropical maize genotypes. The spectral signatures collected were in the visible to near-infrared range (450–950 nm). The data were pre-processed to reduce noise and anomalous signatures. This study presents a spectral library of the effects of nitrogen deficiency on ten maize genotypes, highlighting that some genotypes show tolerance to this type of stress at different phenological stages. Most of the evaluated genotypes showed discriminate spectral features 4–6 weeks after sowing. Higher reflectance was obtained at approximately 550 nm for the lowest nitrogen fertilization treatments. Finally, we describe some potential applications of the spectral library of maize leaves under nitrogen-deficiency stress

    Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease

    No full text
    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis

    Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function

    No full text
    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background

    Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish

    No full text
    Mural cells of the vertebrate brain maintain vascular integrity and function, play roles in stroke and are involved in maintenance of neural stem cells. However, the origins, diversity and roles of mural cells remain to be fully understood. Using transgenic zebrafish, we identified a population of isolated mural lymphatic endothelial cells surrounding meningeal blood vessels. These meningeal mural lymphatic endothelial cells (muLECs) express lymphatic endothelial cell markers and form by sprouting from blood vessels. In larvae, muLECs develop from a lymphatic endothelial loop in the midbrain into a dispersed, nonlumenized mural lineage. muLEC development requires normal signaling through the Vegfc-Vegfd-Ccbe1-Vegfr3 pathway. Mature muLECs produce vascular growth factors and accumulate low-density lipoproteins from the bloodstream. We find that muLECs are essential for normal meningeal vascularization. Together, these data identify an unexpected lymphatic lineage and developmental mechanism necessary for establishing normal meningeal blood vasculature.Neil I Bower, Katarzyna Koltowska, Cathy Pichol-Thievend, Isaac Virshup, Scott Paterson, Anne K Lagendijk, Weili Wang, Benjamin W Lindsey, Stephen J Bent, Sungmin Baek, Maria Rondon-Galeano, Daniel G Hurley, Naoki Mochizuki, Cas Simons, Mathias Francois, Christine A Wells, Jan Kaslin and Benjamin M Hoga
    corecore