16 research outputs found

    Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology

    Get PDF
    The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer

    Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration

    No full text
    Meniere’s disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection

    Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection

    No full text
    Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid–induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc

    Hericium Erinaceus prevents DEHP-induced mitochondrial dysfunction and apoptosis in PC12 cells

    No full text
    HericiumErinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined inpheochromocytoma 12(PC12)cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrate that pretreatment with HEsignificantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptoticand the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells

    Key Mechanisms and Potential Implications of <i>Hericium erinaceus</i> in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is the principal cause of dementia, and its incidence increases with age. Altered antioxidant systems and inflammation have an important role in the etiology of neurodegenerative disorders. In this study, we evaluated the effects of Hericium erinaceus, a nutritional mushroom with important antioxidant effects, in a rat model of AD. Animals were injected with 70 mg/Kg of AlCl3 daily for 6 weeks, and Hericium erinaceus was administered daily by gavage. Before the experiment’s end date, behavioral test training was performed. At the end of the study, behavioral changes were assessed, and the animals were euthanized. Brain tissues were harvested for further analysis. AlCl3 mainly accumulates in the hippocampus, the principal region of the brain involved in memory functions and learning. Hericium erinaceus administration reduced behavioral changes and hippocampal neuronal degeneration. Additionally, it reduced phosphorylated Tau levels, aberrant APP overexpression, and β-amyloid accumulation. Moreover, Hericium erinaceus decreased the pro-oxidative and pro-inflammatory hippocampal alterations induced by AD. In particular, it reduced the activation of the NLRP3 inflammasome components, usually activated by increased oxidative stress during AD. Collectively, our results showed that Hericium erinaceus has protective effects on behavioral alteration and histological modification associated with AD due to the modulation of the oxidative and inflammatory pathways, as well as regulating cellular brain stress

    Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis

    No full text
    Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (&beta;-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1&beta; (IL-1&beta;), tumor necrosis factor-&alpha; (TNF-&alpha;), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney&ndash;brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney&ndash;brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans

    Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox®

    No full text
    Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/β-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40–50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/β-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/β-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM

    Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms

    No full text
    Abstract Human life develops and expands not only in time and space, but also in the retrograde permanent recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered or lost under pathological conditions such as Alzheimer’s disease, including recently associated oxidant pathologies, such as ocular neural degeneration occurring in glaucoma or neurosensorial degeneration occurring in Menière’s disease. Oxidative stress and altered antioxidant systems have been suggested to play a role in the aetiology of major neurodegenerative disorders, and altered expression of genes sensing oxidative stress, as well as decreased cellular stress response mechanisms could synergistically contribute to the course of these oxidant disorders. Thus, the theory that low levels of stress can produce protective responses against the pathogenic processes is a frontier area of neurobiological research focal to understanding and developing therapeutic approaches to neurodegenerative disorders. Herein, we discuss cellular mechanisms underlying AD neuroinflammatory pathogenesis that are contributory to Alzheimer’s disease. We describe endogenous cellular defence mechanism modulation and neurohormesis as a potentially innovative approach to therapeutics for AD and other neurodegenerative conditions that are associated with mitochondrial dysfunction and neuroinflammation. Particularly, we consider the emerging role of the inflammasome as an important component of the neuroprotective network, as well as the importance of Coriolus and Hericium nutritional mushrooms in redox stress responsive mechanisms and neuroprotection
    corecore