21 research outputs found

    A Modified Progressive Supranuclear Palsy Rating Scale

    Get PDF
    Background: The Progressive Supranuclear Palsy Rating Scale is a prospectively validated physician-rated measure of disease severity for progressive supranuclear palsy. We hypothesized that, according to experts' opinion, individual scores of items would differ in relevance for patients' quality of life, functionality in daily living, and mortality. Thus, changes in the score may not equate to clinically meaningful changes in the patient's status. Objective: The aim of this work was to establish a condensed modified version of the scale focusing on meaningful disease milestones. Methods: Sixteen movement disorders experts evaluated each scale item for its capacity to capture disease milestones (0 = no, 1 = moderate, 2 = severe milestone). Items not capturing severe milestones were eliminated. Remaining items were recalibrated in proportion to milestone severity by collapsing across response categories that yielded identical milestone severity grades. Items with low sensitivity to change were eliminated, based on power calculations using longitudinal 12-month follow-up data from 86 patients with possible or probable progressive supranuclear palsy. Results: The modified scale retained 14 items (yielding 0–2 points each). The items were rated as functionally relevant to disease milestones with comparable severity. The modified scale was sensitive to change over 6 and 12 months and of similar power for clinical trials of disease-modifying therapy as the original scale (achieving 80% power for two-sample t test to detect a 50% slowing with n = 41 and 25% slowing with n = 159 at 12 months). Conclusions: The modified Progressive Supranuclear Palsy Rating Scale may serve as a clinimetrically sound scale to monitor disease progression in clinical trials and routine

    Imaging global mantle discontinuities: A test using full-waveforms and adjoint kernels

    Get PDF
    We present a novel approach for imaging global mantle discontinuities based on full-waveform inversion (FWI). Over the past decades, extensive research has been done on imaging mantle discontinuities at approximately 400 and 670 km depth. Accurate knowledge of their topography can put strong constraints on thermal and compositional variations and hence geodynamic modelling. So far, however, there is little consensus on their topography. We present an approach based on adjoint tomography, which has the advantage that Fréchet derivatives for discontinuities and measurements, to be inverted for, are fully consistent. Rather than working with real data, we focus on synthetic tests, where the answer is known in order to be able to evaluate the performance of the developed method. All calculations are based on the community code SPECFEM3D_GLOBE. We generate data in fixed 1-D or 3-D elastic background models of mantle velocity. Our 'data' to be inverted contain topography along the 400 and 670 km mantle discontinuities. To investigate the approach, we perform several tests: (i) In a situation where we know the elastic background model 1-D or 3-D, we recover the target topography fast and accurately; (ii) The exact misfit is not of great importance here, except in terms of convergence speed, similar to a different inverse algorithm and (iii) In a situation where the background model is not known, the convergence is markedly slower, but there is reasonable convergence towards the correct target model of discontinuity topography. It has to be noted that our synthetic test is idealized and in a real data situation, the convergence to and uncertainty of the inferred model is bound to be larger. However, the use of data consistent with Fréchet kernels seems to pay off and might improve our consensus on the nature of mantle discontinuities. Our workflow could be incorporated in future FWI mantle models to adequately infer boundary interface topography

    The effect of topography of upper-mantle discontinuities on SS precursors

    No full text
    Using the spectral-element method, we explored the effect of topography of upper-mantle discontinuities on the traveltimes of SS precursors recorded on transverse component seismograms. The latter are routinely used to infer the topography of mantle transition zone discontinuities. The step from precursory traveltimes to topographic changes is mainly done using linearised ray theory, or sometimes using finite-frequency kernels. We simulated exact seismograms in 1-D and 3-D elastic models of the mantle. In a second simulation, we added topography to the discontinuities. We compared the waveforms obtained with and without topography by cross correlation of the SS precursors. Since we did not add noise, the precursors are visible in individual seismograms without the need of stacking. The resulting time anomalies were then converted into topographic variations and compared to the original topographic models. Based on the correlation between initial and inferred models, and provided that ray coverage is good, we found that linearised ray theory gives a relatively good idea on the location of the uplifts and depressions of the discontinuities. It seriously underestimates the amplitude of the topographic variations by a factor ranging between 2 and 7. Real data depend on the 3-D elastic structure and the topography. All studies to date correct for the 3-D elastic effects assuming that the traveltimes can be linearly decomposed into a structure and a discontinuity part. We found a strong non-linearity in this decomposition which cannot be modelled without a fully non-linear inversion for elastic structure and discontinuities simultaneously.ISSN:0956-540XISSN:1365-246

    Imaging global mantle discontinuities: a test using full-waveforms and adjoint kernels

    Get PDF
    We present a novel approach for imaging global mantle discontinuities based on full-waveform inversion (FWI). Over the past decades, extensive research has been done on imaging mantle discontinuities at approximately 400 km and 670 km depth. Accurate knowledge of their topography can put strong constraints on thermal and compositional variations and hence geodynamic modelling. So far, however, there is little consensus on their topography. We present an approach based on adjoint tomography, which has the advantage that FrĂ©chet derivatives for discontinuities and measurements, to be inverted for, are fully consistent. Rather than working with real data, we focus on synthetic tests, where the answer is known in order to be able to evaluate the performance of the developed method. All calculations are based on the community code SPECFEM3D_GLOBE. We generate data in fixed 1-D or 3-D elastic background models of mantle velocity. Our ‘data’ to be inverted contain topography along the 400 km and 670 km mantle discontinuities. To investigate the approach, we perform several tests: (i) In a situation where we know the elastic background model 1-D or 3-D, we recover the target topography fast and accurately, (ii) The exact misfit is not of great importance here, except in terms of convergence speed, similar to a different inverse algorithm, (iii) In a situation where the background model is not known, the convergence is markedly slower, but there is reasonable convergence towards the correct target model of discontinuity topography. It has to be noted that our synthetic test is idealised and in a real data situation, the convergence to and uncertainty of the inferred model is bound to be larger. However, the use of data consistent with FrĂ©chet kernels seems to pay off and might improve our consensus on the nature of mantle discontinuities. Our workflow could be incorporated in future FWI mantle models to adequately infer boundary interface topography.ISSN:0956-540XISSN:1365-246

    Imaging global mantle discontinuities: A test using full-waveforms and adjoint kernels

    No full text
    We present a novel approach for imaging global mantle discontinuities based on full-waveform inversion (FWI). Over the past decades, extensive research has been done on imaging mantle discontinuities at approximately 400 and 670 km depth. Accurate knowledge of their topography can put strong constraints on thermal and compositional variations and hence geodynamic modelling. So far, however, there is little consensus on their topography. We present an approach based on adjoint tomography, which has the advantage that Fréchet derivatives for discontinuities and measurements, to be inverted for, are fully consistent. Rather than working with real data, we focus on synthetic tests, where the answer is known in order to be able to evaluate the performance of the developed method. All calculations are based on the community code SPECFEM3D_GLOBE. We generate data in fixed 1-D or 3-D elastic background models of mantle velocity. Our 'data' to be inverted contain topography along the 400 and 670 km mantle discontinuities. To investigate the approach, we perform several tests: (i) In a situation where we know the elastic background model 1-D or 3-D, we recover the target topography fast and accurately; (ii) The exact misfit is not of great importance here, except in terms of convergence speed, similar to a different inverse algorithm and (iii) In a situation where the background model is not known, the convergence is markedly slower, but there is reasonable convergence towards the correct target model of discontinuity topography. It has to be noted that our synthetic test is idealized and in a real data situation, the convergence to and uncertainty of the inferred model is bound to be larger. However, the use of data consistent with Fréchet kernels seems to pay off and might improve our consensus on the nature of mantle discontinuities. Our workflow could be incorporated in future FWI mantle models to adequately infer boundary interface topography

    Sensitivity kernels of PP Precursor traveltimes and their limitations for imaging topography of discontinuities

    No full text
    We analyze the sensitivity of PP precursor traveltimes that are often used to infer lateral variation in the depths of the 410- and 660-km discontinuities in the mantle. Previous results were inconclusive due to complex wave phenomena, such as multiple energy conversions and focusing/defocusing, that hamper their interpretation. Using spectral-element synthetics and FrĂ©chet derivatives calculated with adjoint methods, we compute sensitivity kernels for volumetric and boundary parameters in a 1-D model for representative epicentral distances of past studies, and a dominant period of 11–25 s. Our results indicate that the boundary sensitivity of PP precursors is low and that these phases are not coherently seen in exact synthetics. Our most important finding is the strong sensitivity to both shear and compressional wave speeds, indicating that wave interference and wave conversions are dominant. The PP precursor traveltimes appear more sensitive to structural parameters, that is, compressional and shear wave speed, than to the boundaries; therefore, they are unlikely sources for valuable insight into discontinuity topograph
    corecore