9 research outputs found

    Towards targeted colorectal cancer biopsy based on tissue morphology assessment by compression optical coherence elastography

    Get PDF
    Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young’s modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer – low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors

    The influence on biotissue laser resection of a strongly absorbing layer at the optical fiber tip

    No full text
    In this paper, we consider a method of laser resection using the silica glass core from which the cladding layer has been removed as the cutting part of a laser scalpel. An absorbing layer coating the silica fiber tip markedly alters its biotissue cutting characteristics. The results of histological studies of skin after exposure to a laser scalpel with and without a strongly absorbing coating (SAC) at a wavelength of 0.97μm show that resection using a coated scalpel is more sparing. When an uncoated scalpel was used, skin injury was more apparent in both its surface spread and the depth of structural damage, resulting in poorer tissue regeneration

    Multimodal OCT Control for Early Histological Signs of Vulvar Lichen Sclerosus Recurrence after Systemic PDT: Pilot Study

    No full text
    Photodynamic therapy (PDT) is a modern treatment for severe or treatment-resistant vulvar lichen sclerosus (VLS). The chronic and recurrent nature of VLS requires control of recurrences at an early stage. In this paper, a non-invasive multimodal optical coherence tomography (OCT) method was used to control for early histological signs of VLS recurrence after systemic PDT using Photodithazine®. To interpret the OCT data, a histological examination was performed before PDT and 3 months after PDT. Two groups of patients were identified: with early histological signs of VLS recurrence (Group I, n = 5) and without histological signs of VLS recurrence (Group II, n = 6). We use structural OCT, OCT angiography, and OCT lymphangiography throughout 6 months after PDT to visually assess the skin components and to quantitatively assess the dermis by calculating the depth-resolved attenuation coefficient and the density of blood and lymphatic vessels. The OCT data assessment showed a statistically significant difference between the patient groups 3 months after PDT. In Group II, all the studied OCT parameters reached maximum values by the 3rd month after PDT, which indicated recovery of the skin structure. At the same time, in Group I, the values of OCT parameters did not approach the values those in Group II even after 6 months. The obtained results of multimodal OCT can be used for non-invasive control of early histological recurrence of VLS after systemic PDT and for adjusting treatment tactics in advance, without waiting for new clinical manifestations of the disease

    Optical Biomedical Imaging Reveals Criteria for Violated Liver Regenerative Potential

    No full text
    To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver’s regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver. Using multiphoton and SHG microscopy, we assessed the structural state of liver tissue at different stages of induced steatosis and fibrosis before and after 70% partial hepatectomy in rats. Using FLIM, we also performed a detailed analysis of the metabolic state of the hepatocytes. We were able to determine criteria that can reveal a lack of regenerative potential in violated liver, such as the presence of zones with reduced NAD(P)H autofluorescence signals. Furthermore, for a liver with pathology, there was an absence of the jump in the fluorescence lifetime contributions of the bound form of NADH and NADPH the 3rd day after hepatectomy that is characteristic of normal liver regeneration. Such results are associated with decreased intensity of oxidative phosphorylation and of biosynthetic processes in pathological liver, which is the reason for the impaired liver recovery. This modern approach offers an effective tool that can be successfully translated into the clinic for express, intraoperative assessment of the regenerative potential of the pathological liver of a patient

    Depth-Resolved Attenuation Mapping of the Vaginal Wall under Prolapse and after Laser Treatment Using Cross-Polarization Optical Coherence Tomography: A Pilot Study

    No full text
    Vaginal wall prolapse is the most common type of pelvic organ prolapse and is mainly associated with collagen bundle changes in the lamina propria. Neodymium (Nd:YAG) laser treatment was used as an innovative, minimally invasive and non-ablative procedure for the treatment of early-stage vaginal wall prolapse. The purpose of this pilot study was to assess connective tissue changes in the vaginal wall under prolapse without treatment and after Nd:YAG laser treatment using cross-polarization optical coherence tomography (CP OCT) with depth-resolved attenuation mapping. A total of 26 freshly excised samples of vaginal wall from 26 patients with age norm (n = 8), stage I–II prolapses without treatment (n = 8) and stage I–II prolapse 1–2 months after Nd:YAG laser treatment (n = 10) were assessed. As a result, for the first time, depth-resolved attenuation maps of the vaginal wall in the B-scan projection in the co- and cross-polarization channels were constructed. Two parameters within the lamina propria were target calculated: the median value and the percentages of high (≥4 mm−1) and low (−1) attenuation coefficient values. A significant (p p < 0.0001) increase in the parameters compared to the normal level was also observed. Notably, in the cross-channel, both parameters showed a greater difference between the groups than in the co-channel. Therefore, using the cross-channel achieved more reliable differentiation between the groups. To conclude, attenuation coefficient maps allow visualization and quantification of changes in the condition of the connective tissue of the vaginal wall. In the future, CP OCT could be used for in vivo detection of early-stage vaginal wall prolapse and for monitoring the effectiveness of treatment

    Compression Optical Coherence Elastography for Assessing Elasticity of the Vaginal Wall under Prolapse after Neodymium Laser Treatment

    No full text
    Early stages of pelvic organ prolapses are mainly associated with the pelvic floor disfunction as a result of elasticity changes in the connective tissues including the vaginal wall. In this study, for the first time we used a compression optical coherence elastography (C-OCE) method for assessing elasticity of the vaginal wall under prolapse conditions after intravaginal neodymium (Nd:YAG) laser treatment. C-OCE was used for a comparative ex vivo study of vaginal wall average values of stiffness (elastic Young’s modulus) in patients with age norm (n = 6), stage I–II prolapse (n = 5) without treatment and stage I–II prolapse post 1–2 months Nd:YAG laser treatment (n = 10). To verify the C-OCE data, the structural features of the submucosal connective tissue were identified morphometrically by Van Gieson staining using quantitative textural analysis of the state of collagen bundles. The results of a comparative evaluation of C-OCE and histological images demonstrate a statistically significant tissue stiffness decrease in vaginal wall prolapse compared to the age norm (73.5 ± 18.9 kPa vs. 233.5 ± 48.3 kPa; p p < 0.05), which was associated with an increase in the local thickness of the collagen bundles, a change in their orientation, and an increase in the uniformity of their arrangement. The obtained results indicate that the C-OCE can be a robust method for detecting the early stages of vaginal wall prolapse and assessing the elastic modulus increase in the vaginal wall after laser treatment

    Optical Biomedical Imaging Reveals Criteria for Violated Liver Regenerative Potential

    No full text
    To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver&rsquo;s regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver. Using multiphoton and SHG microscopy, we assessed the structural state of liver tissue at different stages of induced steatosis and fibrosis before and after 70% partial hepatectomy in rats. Using FLIM, we also performed a detailed analysis of the metabolic state of the hepatocytes. We were able to determine criteria that can reveal a lack of regenerative potential in violated liver, such as the presence of zones with reduced NAD(P)H autofluorescence signals. Furthermore, for a liver with pathology, there was an absence of the jump in the fluorescence lifetime contributions of the bound form of NADH and NADPH the 3rd day after hepatectomy that is characteristic of normal liver regeneration. Such results are associated with decreased intensity of oxidative phosphorylation and of biosynthetic processes in pathological liver, which is the reason for the impaired liver recovery. This modern approach offers an effective tool that can be successfully translated into the clinic for express, intraoperative assessment of the regenerative potential of the pathological liver of a patient

    Intraoperative Assessment of Breast Cancer Tissues after Breast-Conserving Surgery Based on Mapping the Attenuation Coefficients in 3D Cross-Polarization Optical Coherence Tomography

    No full text
    Intraoperative differentiation of tumorous from non-tumorous tissue can help in the assessment of resection margins in breast cancer and its response to therapy and, potentially, reduce the incidence of tumor recurrence. In this study, the calculation of the attenuation coefficient and its color-coded 2D distribution was performed for different breast cancer subtypes using spectral-domain CP OCT. A total of 68 freshly excised human breast specimens containing tumorous and surrounding non-tumorous tissues after BCS was studied. Immediately after obtaining structural 3D CP OCT images, en face color-coded attenuation coefficient maps were built in co-(Att(co)) and cross-(Att(cross)) polarization channels using a depth-resolved approach to calculating the values in each A-scan. We determined spatially localized signal attenuation in both channels and reported ranges of attenuation coefficients to five selected breast tissue regions (adipose tissue, non-tumorous fibrous connective tissue, hyalinized tumor stroma, low-density tumor cells in the fibrotic tumor stroma and high-density clusters of tumor cells). The Att(cross) coefficient exhibited a stronger gain contrast of studied tissues compared to the Att(co) coefficient (i.e., conventional attenuation coefficient) and, therefore, allowed improved differentiation of all breast tissue types. It has been shown that color-coded attenuation coefficient maps may be used to detect inter- and intra-tumor heterogeneity of various breast cancer subtypes as well as to assess the effectiveness of therapy. For the first time, the optimal threshold values of the attenuation coefficients to differentiate tumorous from non-tumorous breast tissues were determined. Diagnostic testing values for Att(cross) coefficient were higher for differentiation of tumor cell areas and tumor stroma from non-tumorous fibrous connective tissue: diagnostic accuracy was 91–99%, sensitivity—96–98%, and specificity—87–99%. Att(co) coefficient is more suitable for the differentiation of tumor cell areas from adipose tissue: diagnostic accuracy was 83%, sensitivity—84%, and specificity—84%. Therefore, the present study provides a new diagnostic approach to the differentiation of breast cancer tissue types based on the assessment of the attenuation coefficient from real-time CP OCT data and has the potential to be used for further rapid and accurate intraoperative assessment of the resection margins during BCS
    corecore